Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 93908 by abdomathmax last updated on 16/May/20

calculste  lim_(x→0)      ∫_x ^(2x)  ((arctan(xt))/(t+x))dt

$${calculste}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{arctan}\left({xt}\right)}{{t}+{x}}{dt} \\ $$

Commented by redmiiuser last updated on 16/May/20

Answer:0

$${Answer}:\mathrm{0} \\ $$

Commented by abdomathmax last updated on 17/May/20

let F(x)=∫_x ^(2x)  ((arctan(xt))/(t+x)) dt we do the changement  xt =u ⇒F(x) =∫_x^2  ^(2x^2 )   ((arctan(u))/((u/x) +x)) (du/x)  =∫_x^2  ^(2x^2 )    ((arctanu)/(u+x^2 ))du    ∃ c_x ∈]x^2  ,2x^2 [ /  F(x) =arctsn(c_x )∫_x^2  ^(2x^2 )  (du/(u+x^2 )) =arctan(c_x )[ln(u+x^2 )]_x^2  ^(2x^2 )   =arctan(c_x )×(ln(((3x^2 )/(2x^2 ))))  but x→0 ⇒c_x →0 ⇒  lim_(x→0)   F(x) =0×ln((3/2)) =0

$${let}\:{F}\left({x}\right)=\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{arctan}\left({xt}\right)}{{t}+{x}}\:{dt}\:{we}\:{do}\:{the}\:{changement} \\ $$$${xt}\:={u}\:\Rightarrow{F}\left({x}\right)\:=\int_{{x}^{\mathrm{2}} } ^{\mathrm{2}{x}^{\mathrm{2}} } \:\:\frac{{arctan}\left({u}\right)}{\frac{{u}}{{x}}\:+{x}}\:\frac{{du}}{{x}} \\ $$$$\left.=\int_{{x}^{\mathrm{2}} } ^{\mathrm{2}{x}^{\mathrm{2}} } \:\:\:\frac{{arctanu}}{{u}+{x}^{\mathrm{2}} }{du}\:\:\:\:\exists\:{c}_{{x}} \in\right]{x}^{\mathrm{2}} \:,\mathrm{2}{x}^{\mathrm{2}} \left[\:/\right. \\ $$$${F}\left({x}\right)\:={arctsn}\left({c}_{{x}} \right)\int_{{x}^{\mathrm{2}} } ^{\mathrm{2}{x}^{\mathrm{2}} } \:\frac{{du}}{{u}+{x}^{\mathrm{2}} }\:={arctan}\left({c}_{{x}} \right)\left[{ln}\left({u}+{x}^{\mathrm{2}} \right)\right]_{{x}^{\mathrm{2}} } ^{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$={arctan}\left({c}_{{x}} \right)×\left({ln}\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} }\right)\right)\:\:{but}\:{x}\rightarrow\mathrm{0}\:\Rightarrow{c}_{{x}} \rightarrow\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:{F}\left({x}\right)\:=\mathrm{0}×{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com