Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93098 by Rio Michael last updated on 10/May/20

find the general solution to   ∫ (1/(a sin x + b cos x)) dx  and ∫ (1/(a cos x − bsin x)) dx  where a , b are constants.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{to} \\ $$$$\:\int\:\frac{\mathrm{1}}{{a}\:\mathrm{sin}\:{x}\:+\:{b}\:\mathrm{cos}\:{x}}\:{dx}\:\:\mathrm{and}\:\int\:\frac{\mathrm{1}}{{a}\:\mathrm{cos}\:{x}\:−\:{b}\mathrm{sin}\:{x}}\:{dx} \\ $$$$\mathrm{where}\:{a}\:,\:{b}\:\mathrm{are}\:\mathrm{constants}. \\ $$$$ \\ $$

Commented by prakash jain last updated on 10/May/20

asin x+bcos x  =(√(a^2 +b^2 ))((a/(√(a^2 +b^2 )))sin x+(b/(√(a^2 +b^2 )))cos x)  (a/(√(a^2 +b^2 )))=cos α  (b/(√(a^2 +b^2 )))=sin α  (√(a^2 +b^2 ))=(√(a^2 +b^2 ))sin (α+x)  (1/(asin x+bcos x))=(√(a^2 +b^2 ))cosec (x+α)  now use cosec formula for integration.  −−−−−−  Same procedure can be use  (1/(asin x−bcos x))

$${a}\mathrm{sin}\:{x}+{b}\mathrm{cos}\:{x} \\ $$$$=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left(\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\mathrm{sin}\:{x}+\frac{{b}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\mathrm{cos}\:{x}\right) \\ $$$$\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\mathrm{cos}\:\alpha \\ $$$$\frac{{b}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\mathrm{sin}\:\alpha \\ $$$$\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{sin}\:\left(\alpha+{x}\right) \\ $$$$\frac{\mathrm{1}}{{a}\mathrm{sin}\:{x}+{b}\mathrm{cos}\:{x}}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{cosec}\:\left({x}+\alpha\right) \\ $$$$\mathrm{now}\:\mathrm{use}\:\mathrm{cosec}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{integration}. \\ $$$$−−−−−− \\ $$$$\mathrm{Same}\:\mathrm{procedure}\:\mathrm{can}\:\mathrm{be}\:\mathrm{use} \\ $$$$\frac{\mathrm{1}}{{a}\mathrm{sin}\:{x}−{b}\mathrm{cos}\:{x}} \\ $$

Commented by Rio Michael last updated on 10/May/20

thank you sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by abdomathmax last updated on 11/May/20

I =∫  (dx/(acosx +bsinx)) we suppose a≠0  ⇒  I =(1/a)∫     (dx/(cosx +λ sinx))  =A_λ   (λ=(b/a))  changement tan((x/2))=t give  A_λ =(1/a)∫    ((2dt)/((1+t^2 )(((1−t^2 )/(1+t^2 )) +λ((2t)/(1+t^2 )))))  aA_λ =∫   ((2dt)/(1−t^2  +2λt )) =−∫  ((2dt)/(t^2 −2λt −1))  let solve t^2 −2λt −1 =0  Δ^′  =λ^2  +1  ⇒t_1 =λ+(√(1+λ^2 ))  t_2 =λ−(√(1+λ^2 ))  aA_λ =−∫   ((2dt)/((t−t_1 )(t−t_2 )))  =−(2/(2(√(1+λ^2 )))) ∫  ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(√(1+λ^2 )))ln∣((t−t_2 )/(t−t_1 ))∣ +C  =(1/(√(1+λ^2 )))ln∣((t−λ +(√(1+λ^2 )))/(t−λ−(√(1+λ^2 ))))∣ +C  =(1/(√(1+(b^2 /a^2 ))))ln∣((t−(b/a)+(√(1+(b^2 /a^2 ))))/(t−(b/a)−(√(1+(b^2 /a^2 )))))∣ +C  =((∣a∣)/(√(a^2  +b^2 )))ln∣((((at−b)/a)+((√(a^2  +b^2 ))/(∣a∣)))/(((at−b)/a)−((√(a^2 +b^2 ))/(∣a∣))))∣ +C  if we take a>0 we get  I =(1/(√(a^2 +b^2 )))ln∣((atan((x/2))−b+(√(a^2 +b^2 )))/(atan((x/2))−b−(√(a^2  +b^2 ))))∣ +C  =  =

$${I}\:=\int\:\:\frac{{dx}}{{acosx}\:+{bsinx}}\:{we}\:{suppose}\:{a}\neq\mathrm{0}\:\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{{a}}\int\:\:\:\:\:\frac{{dx}}{{cosx}\:+\lambda\:{sinx}}\:\:={A}_{\lambda} \:\:\left(\lambda=\frac{{b}}{{a}}\right) \\ $$$${changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}_{\lambda} =\frac{\mathrm{1}}{{a}}\int\:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+\lambda\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$${aA}_{\lambda} =\int\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}−{t}^{\mathrm{2}} \:+\mathrm{2}\lambda{t}\:}\:=−\int\:\:\frac{\mathrm{2}{dt}}{{t}^{\mathrm{2}} −\mathrm{2}\lambda{t}\:−\mathrm{1}} \\ $$$${let}\:{solve}\:{t}^{\mathrm{2}} −\mathrm{2}\lambda{t}\:−\mathrm{1}\:=\mathrm{0} \\ $$$$\Delta^{'} \:=\lambda^{\mathrm{2}} \:+\mathrm{1}\:\:\Rightarrow{t}_{\mathrm{1}} =\lambda+\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$${t}_{\mathrm{2}} =\lambda−\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$${aA}_{\lambda} =−\int\:\:\:\frac{\mathrm{2}{dt}}{\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\:\int\:\:\left(\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{ln}\mid\frac{{t}−{t}_{\mathrm{2}} }{{t}−{t}_{\mathrm{1}} }\mid\:+{C} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{ln}\mid\frac{{t}−\lambda\:+\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{{t}−\lambda−\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\mid\:+{C} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}}{ln}\mid\frac{{t}−\frac{{b}}{{a}}+\sqrt{\mathrm{1}+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}}{{t}−\frac{{b}}{{a}}−\sqrt{\mathrm{1}+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}}\mid\:+{C} \\ $$$$=\frac{\mid{a}\mid}{\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{ln}\mid\frac{\frac{{at}−{b}}{{a}}+\frac{\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}{\mid{a}\mid}}{\frac{{at}−{b}}{{a}}−\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mid{a}\mid}}\mid\:+{C} \\ $$$${if}\:{we}\:{take}\:{a}>\mathrm{0}\:{we}\:{get} \\ $$$${I}\:=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{ln}\mid\frac{{atan}\left(\frac{{x}}{\mathrm{2}}\right)−{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{atan}\left(\frac{{x}}{\mathrm{2}}\right)−{b}−\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\mid\:+{C} \\ $$$$= \\ $$$$= \\ $$

Commented by Rio Michael last updated on 11/May/20

wow sir spendid

$$\mathrm{wow}\:\mathrm{sir}\:\mathrm{spendid} \\ $$

Commented by mathmax by abdo last updated on 11/May/20

thankx

$${thankx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com