Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92993 by mathmax by abdo last updated on 10/May/20

calculate  ∫_(−∞) ^(+∞)  ((cos(cosx−sinx))/(x^2  +4))dx

$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({cosx}−{sinx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Commented by mathmax by abdo last updated on 10/May/20

I =∫_(−∞) ^(+∞)  ((cos(cosx−sinx))/(x^2 +4))dx ⇒ I =∫_(−∞) ^(+∞)  ((cos((√2)cos(x+(π/4))))/(x^2  +4))dx  =_(x+(π/4)=t)    ∫_(−∞) ^(+∞)  ((cos((√2)t))/((t−(π/4))^2  +4))dt =Re(∫_(−∞) ^(+∞)  (e^(i(√2)t) /((t−(π/4))^2 +4)))  let ϕ(z) =(e^(iz(√2)) /((z−(π/4))^2 +4))   poles of ϕ?  ϕ(z) =(e^(iz(√2)) /((z−(π/4))^2 −(2i)^2 )) =(e^(iz(√2)) /((z−(π/4)−2i)(z−(π/4)+2i)))  so the poles of ϕ are (π/4)+2i and (π/4)−2i  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,(π/4)+2i) =2iπ(e^(i(√2)((π/4)+2i)) /(4i))  =(π/2) e^((iπ(√2))/4)  e^(−2(√2)) =(π/2)e^(−2(√2))   {cos(((π(√2))/4))+isin(((π(√2))/4))} ⇒  I =(π/2)e^(−2(√2))  cos(((π(√2))/4))

$${I}\:=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({cosx}−{sinx}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}\:\Rightarrow\:{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\sqrt{\mathrm{2}}{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$$$=_{{x}+\frac{\pi}{\mathrm{4}}={t}} \:\:\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\sqrt{\mathrm{2}}{t}\right)}{\left({t}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} \:+\mathrm{4}}{dt}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{i}\sqrt{\mathrm{2}}{t}} }{\left({t}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} +\mathrm{4}}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\frac{{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} +\mathrm{4}}\:\:\:{poles}\:{of}\:\varphi? \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} −\left(\mathrm{2}{i}\right)^{\mathrm{2}} }\:=\frac{{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}−\frac{\pi}{\mathrm{4}}−\mathrm{2}{i}\right)\left({z}−\frac{\pi}{\mathrm{4}}+\mathrm{2}{i}\right)} \\ $$$${so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\frac{\pi}{\mathrm{4}}+\mathrm{2}{i}\:{and}\:\frac{\pi}{\mathrm{4}}−\mathrm{2}{i} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\frac{\pi}{\mathrm{4}}+\mathrm{2}{i}\right)\:=\mathrm{2}{i}\pi\frac{{e}^{{i}\sqrt{\mathrm{2}}\left(\frac{\pi}{\mathrm{4}}+\mathrm{2}{i}\right)} }{\mathrm{4}{i}} \\ $$$$=\frac{\pi}{\mathrm{2}}\:{e}^{\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{4}}} \:{e}^{−\mathrm{2}\sqrt{\mathrm{2}}} =\frac{\pi}{\mathrm{2}}{e}^{−\mathrm{2}\sqrt{\mathrm{2}}} \:\:\left\{{cos}\left(\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\right)+{isin}\left(\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\right)\right\}\:\Rightarrow \\ $$$${I}\:=\frac{\pi}{\mathrm{2}}{e}^{−\mathrm{2}\sqrt{\mathrm{2}}} \:{cos}\left(\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com