Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 92464 by jagoll last updated on 07/May/20

(dy/dx) = (e^y /x^2 ) − (1/x)

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{e}^{\mathrm{y}} }{\mathrm{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{x}} \\ $$

Commented by mr W last updated on 07/May/20

how do you get  (dy/e^y )=(dx/x^2 )−(dx/x) from  (dy/dx)=(e^y /x^2 )−(1/x) ?  it is not  (dy/dx)=(e^y /x^2 )−(e^y /x)!

$${how}\:{do}\:{you}\:{get} \\ $$$$\frac{{dy}}{{e}^{{y}} }=\frac{{dx}}{{x}^{\mathrm{2}} }−\frac{{dx}}{{x}}\:{from} \\ $$$$\frac{{dy}}{{dx}}=\frac{{e}^{{y}} }{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}}\:? \\ $$$${it}\:{is}\:{not} \\ $$$$\frac{{dy}}{{dx}}=\frac{{e}^{{y}} }{{x}^{\mathrm{2}} }−\frac{{e}^{{y}} }{{x}}! \\ $$

Commented by mathmax by abdo last updated on 07/May/20

⇒(dy/e^y ) =(dx/x^2 )−(dx/x)    let e^y  =t ⇒y =ln(t)⇒dy= (dt/t)  ⇒(dt/t^2 ) =(dx/x^2 )−(dx/x) ⇒−(1/t) =−(1/x)−ln(x) +c ⇒  (1/t) =(1/x)+lnx+c ⇒t =(1/((1/x)+lnx +c)) ⇒y =−ln((1/x)+lnx +c)

$$\Rightarrow\frac{{dy}}{{e}^{{y}} }\:=\frac{{dx}}{{x}^{\mathrm{2}} }−\frac{{dx}}{{x}}\:\:\:\:{let}\:{e}^{{y}} \:={t}\:\Rightarrow{y}\:={ln}\left({t}\right)\Rightarrow{dy}=\:\frac{{dt}}{{t}} \\ $$$$\Rightarrow\frac{{dt}}{{t}^{\mathrm{2}} }\:=\frac{{dx}}{{x}^{\mathrm{2}} }−\frac{{dx}}{{x}}\:\Rightarrow−\frac{\mathrm{1}}{{t}}\:=−\frac{\mathrm{1}}{{x}}−{ln}\left({x}\right)\:+{c}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{t}}\:=\frac{\mathrm{1}}{{x}}+{lnx}+{c}\:\Rightarrow{t}\:=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{x}}+{lnx}\:+{c}}\:\Rightarrow{y}\:=−{ln}\left(\frac{\mathrm{1}}{{x}}+{lnx}\:+{c}\right) \\ $$

Commented by i jagooll last updated on 16/May/20

mr Abdo. no sir. it no correct

$$\mathrm{mr}\:\mathrm{Abdo}.\:\mathrm{no}\:\mathrm{sir}.\:\mathrm{it}\:\mathrm{no}\:\mathrm{correct} \\ $$$$ \\ $$

Commented by i jagooll last updated on 16/May/20

(dy/dx) = ((e^y −x)/x^2 ) ⇒ (dy/(e^y −x)) = (dx/x^2 )  how get (dy/e^y ) = (dx/x^2 )−(dx/x)

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{e}^{\mathrm{y}} −\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\:\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{e}^{\mathrm{y}} −\mathrm{x}}\:=\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{how}\:\mathrm{get}\:\frac{\mathrm{dy}}{\mathrm{e}^{\mathrm{y}} }\:=\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{dx}}{\mathrm{x}}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com