Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 91750 by jagoll last updated on 02/May/20

(2x−y+1)dx = (x−4y+3)dy

$$\left(\mathrm{2}{x}−{y}+\mathrm{1}\right){dx}\:=\:\left({x}−\mathrm{4}{y}+\mathrm{3}\right){dy} \\ $$

Commented by mr W last updated on 02/May/20

see Q90770

$${see}\:{Q}\mathrm{90770} \\ $$

Commented by john santu last updated on 03/May/20

(dy/dx) = ((2x−y+1)/(x−4y+3))  let x = w+w_o  ; y = v+v_o   2x−y+1=2w+2w_o −v−v_o +1  x−4y+3=w+w_o −4v−4v_o +3  set 2w_o −v_o +1=0  set w_o −4v_o +3=0  v_o = (5/7); w_o = −(1/7)  ⇒x=w−(1/7) ∧y=v+(5/7)  let v = wt ⇒(dv/dw)=t+w (dt/dw) =((2−t)/(1−4t))  w(dt/(dw )) = ((4t^2 −2t+2)/(1−4t))  (((1−4t)dt)/(2t^2 −t+1)) = ((2dw)/w)  ∫ (((1−4t)dt)/(2t^2 −t+1)) = 2ln(w)+c  ∫ ((−d(2t^2 −t+1))/(2t^2 −t+1)) = 2ln(w) +c  ln(2t^2 −t+1) = −2ln(w)+c  2t^2 −t+1 = (C/w^2 )  2((v/w))^2 −((v/w))+1=(C/w^2 )  2v^2 −vw+w^2 =C  (2v+w)(v−w) = C  (((7x+7y−4)/7))(((7y−7x−6)/7)) = C  (7x+7y−4)(7y−7x−6)= 49C

$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}−{y}+\mathrm{1}}{{x}−\mathrm{4}{y}+\mathrm{3}} \\ $$$${let}\:{x}\:=\:{w}+{w}_{{o}} \:;\:{y}\:=\:{v}+{v}_{{o}} \\ $$$$\mathrm{2}{x}−{y}+\mathrm{1}=\mathrm{2}{w}+\mathrm{2}{w}_{{o}} −{v}−{v}_{{o}} +\mathrm{1} \\ $$$${x}−\mathrm{4}{y}+\mathrm{3}={w}+{w}_{{o}} −\mathrm{4}{v}−\mathrm{4}{v}_{{o}} +\mathrm{3} \\ $$$${set}\:\mathrm{2}{w}_{{o}} −{v}_{{o}} +\mathrm{1}=\mathrm{0} \\ $$$${set}\:{w}_{{o}} −\mathrm{4}{v}_{{o}} +\mathrm{3}=\mathrm{0} \\ $$$${v}_{{o}} =\:\frac{\mathrm{5}}{\mathrm{7}};\:{w}_{{o}} =\:−\frac{\mathrm{1}}{\mathrm{7}} \\ $$$$\Rightarrow{x}={w}−\frac{\mathrm{1}}{\mathrm{7}}\:\wedge{y}={v}+\frac{\mathrm{5}}{\mathrm{7}} \\ $$$${let}\:{v}\:=\:{wt}\:\Rightarrow\frac{{dv}}{{dw}}={t}+{w}\:\frac{{dt}}{{dw}}\:=\frac{\mathrm{2}−{t}}{\mathrm{1}−\mathrm{4}{t}} \\ $$$${w}\frac{{dt}}{{dw}\:}\:=\:\frac{\mathrm{4}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}}{\mathrm{1}−\mathrm{4}{t}} \\ $$$$\frac{\left(\mathrm{1}−\mathrm{4}{t}\right){dt}}{\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}}\:=\:\frac{\mathrm{2}{dw}}{{w}} \\ $$$$\int\:\frac{\left(\mathrm{1}−\mathrm{4}{t}\right){dt}}{\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}}\:=\:\mathrm{2ln}\left({w}\right)+{c} \\ $$$$\int\:\frac{−{d}\left(\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}\right)}{\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}}\:=\:\mathrm{2ln}\left({w}\right)\:+{c} \\ $$$$\mathrm{ln}\left(\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}\right)\:=\:−\mathrm{2ln}\left({w}\right)+{c} \\ $$$$\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}\:=\:\frac{{C}}{{w}^{\mathrm{2}} } \\ $$$$\mathrm{2}\left(\frac{{v}}{{w}}\right)^{\mathrm{2}} −\left(\frac{{v}}{{w}}\right)+\mathrm{1}=\frac{{C}}{{w}^{\mathrm{2}} } \\ $$$$\mathrm{2}{v}^{\mathrm{2}} −{vw}+{w}^{\mathrm{2}} ={C} \\ $$$$\left(\mathrm{2}{v}+{w}\right)\left({v}−{w}\right)\:=\:{C} \\ $$$$\left(\frac{\mathrm{7}{x}+\mathrm{7}{y}−\mathrm{4}}{\mathrm{7}}\right)\left(\frac{\mathrm{7}{y}−\mathrm{7}{x}−\mathrm{6}}{\mathrm{7}}\right)\:=\:{C} \\ $$$$\left(\mathrm{7}{x}+\mathrm{7}{y}−\mathrm{4}\right)\left(\mathrm{7}{y}−\mathrm{7}{x}−\mathrm{6}\right)=\:\mathrm{49}{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com