Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 91036 by niroj last updated on 27/Apr/20

 Solve:    (x+a)^2 (d^2 y/dx^2 )−4(x+a)(dy/dx)+6y= x

$$\:\mathrm{Solve}: \\ $$$$\:\:\left(\mathrm{x}+\mathrm{a}\right)^{\mathrm{2}} \frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }−\mathrm{4}\left(\mathrm{x}+\mathrm{a}\right)\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{6y}=\:\mathrm{x} \\ $$

Answered by MWSuSon last updated on 27/Apr/20

let x+a=e^z  ⇒x=e^z −a  (x+a)^2 (d^2 y/dx^2 )=D(D−1)y  (x+a)(dy/dx)=Dy  D(D−1)y−4Dy+6y=e^z −a  (D^2 −D−4D+6)y=e^z −a  (D^2 −5D+6)y=e^z −a  Auxillary eauation  m^2 −5m+6=0  (m−2)(m−3)=0  m=2,3  y_c =C_1 e^(2z) +C_2 e^(3z)   y_p =(1/(D^2 −5D+6))(e^z −a)  =(1/(D^2 −5D+6))e^z −(1/(D^2 −5D+6))a  =(1/(1−5+6))e^z −a(1/(D^2 −5D+6))e^(0x)   =(e^z /2)−a(1/(0−0+6))e^(0x)   =(e^z /2)−(a/6)  y=C_1 e^(2z) +C_2 e^(3z) +(e^z /2)−(a/6)  but x+a=e^z ⇒z=log_e (x+a)  y=C_1 (x+a)^2 +C_2 (x+a)^3 +(((x+a))/2)+(a/6)

$${let}\:{x}+{a}={e}^{{z}} \:\Rightarrow{x}={e}^{{z}} −{a} \\ $$$$\left({x}+{a}\right)^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={D}\left({D}−\mathrm{1}\right){y} \\ $$$$\left({x}+{a}\right)\frac{{dy}}{{dx}}={Dy} \\ $$$${D}\left({D}−\mathrm{1}\right){y}−\mathrm{4}{Dy}+\mathrm{6}{y}={e}^{{z}} −{a} \\ $$$$\left({D}^{\mathrm{2}} −{D}−\mathrm{4}{D}+\mathrm{6}\right){y}={e}^{{z}} −{a} \\ $$$$\left({D}^{\mathrm{2}} −\mathrm{5}{D}+\mathrm{6}\right){y}={e}^{{z}} −{a} \\ $$$${Auxillary}\:{eauation} \\ $$$${m}^{\mathrm{2}} −\mathrm{5}{m}+\mathrm{6}=\mathrm{0} \\ $$$$\left({m}−\mathrm{2}\right)\left({m}−\mathrm{3}\right)=\mathrm{0} \\ $$$${m}=\mathrm{2},\mathrm{3} \\ $$$${y}_{{c}} ={C}_{\mathrm{1}} {e}^{\mathrm{2}{z}} +{C}_{\mathrm{2}} {e}^{\mathrm{3}{z}} \\ $$$${y}_{{p}} =\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{5}{D}+\mathrm{6}}\left({e}^{{z}} −{a}\right) \\ $$$$=\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{5}{D}+\mathrm{6}}{e}^{{z}} −\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{5}{D}+\mathrm{6}}{a} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{5}+\mathrm{6}}{e}^{{z}} −{a}\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{5}{D}+\mathrm{6}}{e}^{\mathrm{0}{x}} \\ $$$$=\frac{{e}^{{z}} }{\mathrm{2}}−{a}\frac{\mathrm{1}}{\mathrm{0}−\mathrm{0}+\mathrm{6}}{e}^{\mathrm{0}{x}} \\ $$$$=\frac{{e}^{{z}} }{\mathrm{2}}−\frac{{a}}{\mathrm{6}} \\ $$$${y}={C}_{\mathrm{1}} {e}^{\mathrm{2}{z}} +{C}_{\mathrm{2}} {e}^{\mathrm{3}{z}} +\frac{{e}^{{z}} }{\mathrm{2}}−\frac{{a}}{\mathrm{6}} \\ $$$${but}\:{x}+{a}={e}^{{z}} \Rightarrow{z}={log}_{{e}} \left({x}+{a}\right) \\ $$$${y}={C}_{\mathrm{1}} \left({x}+{a}\right)^{\mathrm{2}} +{C}_{\mathrm{2}} \left({x}+{a}\right)^{\mathrm{3}} +\frac{\left({x}+{a}\right)}{\mathrm{2}}+\frac{{a}}{\mathrm{6}} \\ $$

Commented by peter frank last updated on 27/Apr/20

thank you

$${thank}\:{you} \\ $$

Commented by peter frank last updated on 27/Apr/20

thank you

$${thank}\:{you} \\ $$

Commented by niroj last updated on 03/May/20

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com