Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 91010 by jagoll last updated on 27/Apr/20

solve the diff eq   y′′′−y′′+4y′−4y= e^x

$${solve}\:{the}\:{diff}\:{eq}\: \\ $$$${y}'''−{y}''+\mathrm{4}{y}'−\mathrm{4}{y}=\:{e}^{{x}} \\ $$

Commented by john santu last updated on 27/Apr/20

the characteristic equation   w^3 −w^2 +4w −4 = 0  with roots are w = 1, ± 2i  complementary solution  y_c  = K_1 e^x +K_2 cos 2x+K_3 sin 2x  particular solution  y_p  = Qxe^x +Re^x   y′= Qxe^x +(Q+R)e^x   y′′= Qxe^x +(2Q+R)e^x   y′′′ = Qxe^x +(3Q+R)e^x   comparing coeff  y′′′−y′′+4y′−4y = 5Qe^x = e^x   Q = (1/5)  general solution   y = (1/5)xe^x +K_1 e^x +K_2 cos 2x+K_3 sin 2x

$${the}\:{characteristic}\:{equation}\: \\ $$$${w}^{\mathrm{3}} −{w}^{\mathrm{2}} +\mathrm{4}{w}\:−\mathrm{4}\:=\:\mathrm{0} \\ $$$${with}\:{roots}\:{are}\:{w}\:=\:\mathrm{1},\:\pm\:\mathrm{2}{i} \\ $$$${complementary}\:{solution} \\ $$$${y}_{{c}} \:=\:{K}_{\mathrm{1}} {e}^{{x}} +{K}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}{x}+{K}_{\mathrm{3}} \mathrm{sin}\:\mathrm{2}{x} \\ $$$${particular}\:{solution} \\ $$$${y}_{{p}} \:=\:{Qxe}^{{x}} +{Re}^{{x}} \\ $$$${y}'=\:{Qxe}^{{x}} +\left({Q}+{R}\right){e}^{{x}} \\ $$$${y}''=\:{Qxe}^{{x}} +\left(\mathrm{2}{Q}+{R}\right){e}^{{x}} \\ $$$${y}'''\:=\:{Qxe}^{{x}} +\left(\mathrm{3}{Q}+{R}\right){e}^{{x}} \\ $$$${comparing}\:{coeff} \\ $$$${y}'''−{y}''+\mathrm{4}{y}'−\mathrm{4}{y}\:=\:\mathrm{5}{Qe}^{{x}} =\:{e}^{{x}} \\ $$$${Q}\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${general}\:{solution}\: \\ $$$${y}\:=\:\frac{\mathrm{1}}{\mathrm{5}}{xe}^{{x}} +{K}_{\mathrm{1}} {e}^{{x}} +{K}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}{x}+{K}_{\mathrm{3}} \mathrm{sin}\:\mathrm{2}{x} \\ $$

Commented by jagoll last updated on 27/Apr/20

thank you both

$${thank}\:{you}\:{both} \\ $$

Answered by MWSuSon last updated on 27/Apr/20

Auxillary equation  m^3 −4m^2 +4m−4=0  (m−1)(m^2 +4)=0  m=1,±i2  y_c =C_1 e^x +C_2 cos (2x)+C_3 sin (2x)  y_p =(1/(D^3 −D^2 +4D−4))e^x   =(1/(1−1+4−4))e^x  which is undefinded  so y_p =x(1/(3D^2 −2D+4))e^x   y_p =x(1/(3−2+4))e^x =((xe^x )/5)  y=C_1 e^x +C_2 cos (2x)+C_3 sin (2x)+((xe^x )/5)

$${Auxillary}\:{equation} \\ $$$${m}^{\mathrm{3}} −\mathrm{4}{m}^{\mathrm{2}} +\mathrm{4}{m}−\mathrm{4}=\mathrm{0} \\ $$$$\left({m}−\mathrm{1}\right)\left({m}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{0} \\ $$$${m}=\mathrm{1},\pm{i}\mathrm{2} \\ $$$${y}_{{c}} ={C}_{\mathrm{1}} {e}^{{x}} +{C}_{\mathrm{2}} \mathrm{cos}\:\left(\mathrm{2}{x}\right)+{C}_{\mathrm{3}} \mathrm{sin}\:\left(\mathrm{2}{x}\right) \\ $$$${y}_{{p}} =\frac{\mathrm{1}}{{D}^{\mathrm{3}} −{D}^{\mathrm{2}} +\mathrm{4}{D}−\mathrm{4}}{e}^{{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{1}+\mathrm{4}−\mathrm{4}}{e}^{{x}} \:{which}\:{is}\:{undefinded} \\ $$$${so}\:{y}_{{p}} ={x}\frac{\mathrm{1}}{\mathrm{3}{D}^{\mathrm{2}} −\mathrm{2}{D}+\mathrm{4}}{e}^{{x}} \\ $$$${y}_{{p}} ={x}\frac{\mathrm{1}}{\mathrm{3}−\mathrm{2}+\mathrm{4}}{e}^{{x}} =\frac{{xe}^{{x}} }{\mathrm{5}} \\ $$$${y}={C}_{\mathrm{1}} {e}^{{x}} +{C}_{\mathrm{2}} \mathrm{cos}\:\left(\mathrm{2}{x}\right)+{C}_{\mathrm{3}} \mathrm{sin}\:\left(\mathrm{2}{x}\right)+\frac{{xe}^{{x}} }{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com