Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 90969 by abdomathmax last updated on 27/Apr/20

solve y^(′′) −2ay^′  +(1+a^2 )y =x +e^(ax)   a real

$${solve}\:{y}^{''} −\mathrm{2}{ay}^{'} \:+\left(\mathrm{1}+{a}^{\mathrm{2}} \right){y}\:={x}\:+{e}^{{ax}} \\ $$$${a}\:{real} \\ $$

Commented by niroj last updated on 27/Apr/20

 y^(′′) −2ay^′ +(1+a^2 )y=x +e^(ax)      (D^2 −2aD+1+a^2 )y= x+e^(ax)     A.E.,   m^2 −2am+(1+a^2 )=0    m= ((2a+^− (√(4a^2 −4(1+a^2 ))))/2)      = ((2a+^− (√(4a^2 −4−4a^2 )))/2)= ((2a+^− (√(−4)))/2)   m= a+^− i   CF= e^(ax) (C_1 cos x+C_2 sinx)   PI= ((x+e^(ax) )/(D^2 −2aD+(1+a^2 )))   = (1/(1+a^2 ))[ (1/(1+((D^2 −2aD)/(1+a^2 ))))]x+ (e^(ax) /(a^2 −2a^2 +1+a^2 ))  = (1/(1+a^2 ))(1+((D^2 −2aD)/(1+a^2 )))^(−1) x+ (e^(ax) /1)  = (1/(1+a^2 ))[ 1−(((D^2 −2aD)/(1+a^2 )))+(((D^2 −2aD)/(1+a^2 )))^2 −...]x + e^(ax)    = (1/(1+a^2 ))[ 1+((2aD)/(1+a^2 ))]x+e^(ax)   = (1/(1+a^2 ))[ x +((2a)/(1+a^2 ))Dx]+e^(ax)   = (1/(1+a^2 ))[x+((2a)/(1+a^2 ))]+e^(ax)    y=CF+PI   y= e^(ax) (C_1 cosx+C_2 sinx)+ (x/(1+a^2 ))+((2a)/((1+a^2 )^2 ))+e^(ax)  //.

$$\:\mathrm{y}^{''} −\mathrm{2ay}^{'} +\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)\mathrm{y}=\mathrm{x}\:+\mathrm{e}^{\mathrm{ax}} \\ $$$$\:\:\:\left(\mathrm{D}^{\mathrm{2}} −\mathrm{2aD}+\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)\mathrm{y}=\:\mathrm{x}+\mathrm{e}^{\mathrm{ax}} \\ $$$$\:\:\mathrm{A}.\mathrm{E}., \\ $$$$\:\mathrm{m}^{\mathrm{2}} −\mathrm{2am}+\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\:\:\mathrm{m}=\:\frac{\mathrm{2a}\overset{−} {+}\sqrt{\mathrm{4a}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\:\:\:\:=\:\frac{\mathrm{2a}\overset{−} {+}\sqrt{\mathrm{4a}^{\mathrm{2}} −\mathrm{4}−\mathrm{4a}^{\mathrm{2}} }}{\mathrm{2}}=\:\frac{\mathrm{2a}\overset{−} {+}\sqrt{−\mathrm{4}}}{\mathrm{2}} \\ $$$$\:\mathrm{m}=\:\mathrm{a}\overset{−} {+}\mathrm{i} \\ $$$$\:\mathrm{CF}=\:\mathrm{e}^{\mathrm{ax}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{x}+\mathrm{C}_{\mathrm{2}} \mathrm{sinx}\right) \\ $$$$\:\mathrm{PI}=\:\frac{\mathrm{x}+\mathrm{e}^{\mathrm{ax}} }{\mathrm{D}^{\mathrm{2}} −\mathrm{2}{a}\mathrm{D}+\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\left[\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{D}^{\mathrm{2}} −\mathrm{2aD}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }}\right]\mathrm{x}+\:\frac{\mathrm{e}^{\mathrm{ax}} }{\mathrm{a}^{\mathrm{2}} −\mathrm{2a}^{\mathrm{2}} +\mathrm{1}+\mathrm{a}^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{D}^{\mathrm{2}} −\mathrm{2aD}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\right)^{−\mathrm{1}} \mathrm{x}+\:\frac{\mathrm{e}^{\mathrm{ax}} }{\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\left[\:\mathrm{1}−\left(\frac{\mathrm{D}^{\mathrm{2}} −\mathrm{2aD}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\right)+\left(\frac{\mathrm{D}^{\mathrm{2}} −\mathrm{2aD}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\right)^{\mathrm{2}} −...\right]\mathrm{x}\:+\:\mathrm{e}^{\mathrm{ax}} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\left[\:\mathrm{1}+\frac{\mathrm{2aD}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\right]\mathrm{x}+\mathrm{e}^{\mathrm{ax}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\left[\:\mathrm{x}\:+\frac{\mathrm{2a}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\mathrm{Dx}\right]+\mathrm{e}^{\mathrm{ax}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\left[\mathrm{x}+\frac{\mathrm{2a}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }\right]+\mathrm{e}^{\mathrm{ax}} \\ $$$$\:\mathrm{y}=\mathrm{CF}+\mathrm{PI} \\ $$$$\:\mathrm{y}=\:\mathrm{e}^{\mathrm{ax}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cosx}+\mathrm{C}_{\mathrm{2}} \mathrm{sinx}\right)+\:\frac{\mathrm{x}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{2a}}{\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{2}} }+\mathrm{e}^{\mathrm{ax}} \://. \\ $$

Commented by mathmax by abdo last updated on 28/Apr/20

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented by niroj last updated on 03/May/20

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com