Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 87733 by TawaTawa1 last updated on 05/Apr/20

Commented by mahdi last updated on 05/Apr/20

27y^3 +(1/y^3 )=(3y+(1/y))(9y^2 +(1/y^2 )−3)=  (3y+(1/y))(3−3)=0

$$\mathrm{27y}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{3}} }=\left(\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{y}}\right)\left(\mathrm{9y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }−\mathrm{3}\right)= \\ $$$$\left(\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{y}}\right)\left(\mathrm{3}−\mathrm{3}\right)=\mathrm{0} \\ $$

Commented by TawaTawa1 last updated on 05/Apr/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mind is power last updated on 05/Apr/20

9y^2 +(1/y^2 )=3=a  ⇒729y^6 +(1/y^6 )+243y^2 +((27)/y^2 )=27..E  b^2 =(27y^3 +(1/y^3 ))^2 =54+729y^6 +(1/y^6 )  =b^2 −54=729y^6 +(1/y^6 )  E=b^2 −54+27(3y^2 +(1/y^2 ))=27⇒b^2 −81+27(3)=0  b^2 =0⇒b=0=27y^3 +(1/y^3 )

$$\mathrm{9}{y}^{\mathrm{2}} +\frac{\mathrm{1}}{{y}^{\mathrm{2}} }=\mathrm{3}={a} \\ $$$$\Rightarrow\mathrm{729}{y}^{\mathrm{6}} +\frac{\mathrm{1}}{{y}^{\mathrm{6}} }+\mathrm{243}{y}^{\mathrm{2}} +\frac{\mathrm{27}}{{y}^{\mathrm{2}} }=\mathrm{27}..{E} \\ $$$${b}^{\mathrm{2}} =\left(\mathrm{27}{y}^{\mathrm{3}} +\frac{\mathrm{1}}{{y}^{\mathrm{3}} }\right)^{\mathrm{2}} =\mathrm{54}+\mathrm{729}{y}^{\mathrm{6}} +\frac{\mathrm{1}}{{y}^{\mathrm{6}} } \\ $$$$={b}^{\mathrm{2}} −\mathrm{54}=\mathrm{729}{y}^{\mathrm{6}} +\frac{\mathrm{1}}{{y}^{\mathrm{6}} } \\ $$$${E}={b}^{\mathrm{2}} −\mathrm{54}+\mathrm{27}\left(\mathrm{3}{y}^{\mathrm{2}} +\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\right)=\mathrm{27}\Rightarrow{b}^{\mathrm{2}} −\mathrm{81}+\mathrm{27}\left(\mathrm{3}\right)=\mathrm{0} \\ $$$${b}^{\mathrm{2}} =\mathrm{0}\Rightarrow{b}=\mathrm{0}=\mathrm{27}{y}^{\mathrm{3}} +\frac{\mathrm{1}}{{y}^{\mathrm{3}} } \\ $$$$ \\ $$

Commented by TawaTawa1 last updated on 05/Apr/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mind is power last updated on 05/Apr/20

you too miss

$${you}\:{too}\:{miss} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com