Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 86120 by jagoll last updated on 27/Mar/20

(dy/dx) + ((sin 2y)/x) = x^3  cos^2  y

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{sin}\:\mathrm{2y}}{\mathrm{x}}\:=\:\mathrm{x}^{\mathrm{3}} \:\mathrm{cos}\:^{\mathrm{2}} \:\mathrm{y} \\ $$

Commented by Prithwish Sen 1 last updated on 27/Mar/20

sir it is sin2x not sin2y .

$${sir}\:{it}\:{is}\:{sin}\mathrm{2}{x}\:{not}\:{sin}\mathrm{2}{y}\:. \\ $$

Commented by jagoll last updated on 27/Mar/20

o sorry . i′m wrong write the   equation. i will correct

$$\mathrm{o}\:\mathrm{sorry}\:.\:\mathrm{i}'\mathrm{m}\:\mathrm{wrong}\:\mathrm{write}\:\mathrm{the}\: \\ $$$$\mathrm{equation}.\:\mathrm{i}\:\mathrm{will}\:\mathrm{correct} \\ $$

Commented by jagoll last updated on 27/Mar/20

sir. john. soory. you answer   not correct

$$\mathrm{sir}.\:\mathrm{john}.\:\mathrm{soory}.\:\mathrm{you}\:\mathrm{answer}\: \\ $$$$\mathrm{not}\:\mathrm{correct} \\ $$

Commented by john santu last updated on 27/Mar/20

ok

$${ok} \\ $$

Commented by niroj last updated on 27/Mar/20

  (dy/dx)+ ((sin2y)/x)= x^3  cos^2 y    divide both side by cos^2 y       (1/(cos^2 y ))(dy/dx)+ ((2siny.cos y)/(x.cos^2 y))=((x^3 cos^2 y)/(cos^2 y))     sec^2 y (dy/dx) + (2/x)tany=x^3     multiply both side by x^2     x^2  sec^2 y (dy/dx) + x^2 .(2/x)tany =x^3 .x^2     x^2 sec^2 y (dy/dx) + 2x tany=x^5      (d/dx) (x^2 tan y)=x^5     On integratin both side by ∫dx.       ∫ (d/dx)(x^2  tan y).dx=∫x^5 dx    x^2 tan y= (x^6 /6)+C//.

$$\:\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}+\:\frac{\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}=\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{y}} \\ $$$$\:\:\mathrm{divide}\:\mathrm{both}\:\mathrm{side}\:\mathrm{by}\:\mathrm{cos}^{\mathrm{2}} \mathrm{y}\:\:\: \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \mathrm{y}\:}\frac{\mathrm{dy}}{\mathrm{dx}}+\:\frac{\mathrm{2siny}.\mathrm{cos}\:\mathrm{y}}{\mathrm{x}.\mathrm{cos}^{\mathrm{2}} \mathrm{y}}=\frac{\mathrm{x}^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \mathrm{y}}{\mathrm{cos}^{\mathrm{2}} \mathrm{y}} \\ $$$$\:\:\:\mathrm{sec}^{\mathrm{2}} \mathrm{y}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{2}}{\mathrm{x}}\mathrm{tany}=\mathrm{x}^{\mathrm{3}} \\ $$$$\:\:\mathrm{multiply}\:\mathrm{both}\:\mathrm{side}\:\mathrm{by}\:\mathrm{x}^{\mathrm{2}} \\ $$$$\:\:\mathrm{x}^{\mathrm{2}} \:\mathrm{sec}^{\mathrm{2}} \mathrm{y}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{x}^{\mathrm{2}} .\frac{\mathrm{2}}{\mathrm{x}}\mathrm{tany}\:=\mathrm{x}^{\mathrm{3}} .\mathrm{x}^{\mathrm{2}} \\ $$$$\:\:\mathrm{x}^{\mathrm{2}} \mathrm{sec}^{\mathrm{2}} \mathrm{y}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{2x}\:\mathrm{tany}=\mathrm{x}^{\mathrm{5}} \\ $$$$\:\:\:\frac{\mathrm{d}}{\mathrm{dx}}\:\left(\mathrm{x}^{\mathrm{2}} \mathrm{tan}\:\mathrm{y}\right)=\mathrm{x}^{\mathrm{5}} \\ $$$$\:\:\mathrm{On}\:\mathrm{integratin}\:\mathrm{both}\:\mathrm{side}\:\mathrm{by}\:\int\mathrm{dx}. \\ $$$$\:\:\:\:\:\int\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{2}} \:\mathrm{tan}\:\mathrm{y}\right).\mathrm{dx}=\int\mathrm{x}^{\mathrm{5}} \mathrm{dx} \\ $$$$\:\:\mathrm{x}^{\mathrm{2}} \mathrm{tan}\:\mathrm{y}=\:\frac{\mathrm{x}^{\mathrm{6}} }{\mathrm{6}}+\mathrm{C}//. \\ $$$$\:\: \\ $$$$\:\: \\ $$

Answered by mind is power last updated on 27/Mar/20

⇒(1/(cos^2 (y)))(dy/dx)+((2tg(y))/x)=x^3   u=tg(y)⇒(du/dx)=(dy/dx)(1+tg^2 (y))  ⇒u′+((2u)/x)=x^3   u=(1/x^2 ) homegenius  ⇒(k/x^2 )=u⇒((k′)/x^2 )−((2k)/x^3 )+((2k)/x^3 )=x^3   k′=x^5 ⇒k=(x^6 /6)+c  (x^4 /6)+(c/x^2 )=u  y=tan^(−1) ((x^4 /6)+(c/x^2 ))

$$\Rightarrow\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left({y}\right)}\frac{{dy}}{{dx}}+\frac{\mathrm{2}{tg}\left({y}\right)}{{x}}={x}^{\mathrm{3}} \\ $$$${u}={tg}\left({y}\right)\Rightarrow\frac{{du}}{{dx}}=\frac{{dy}}{{dx}}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({y}\right)\right) \\ $$$$\Rightarrow{u}'+\frac{\mathrm{2}{u}}{{x}}={x}^{\mathrm{3}} \\ $$$${u}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{homegenius} \\ $$$$\Rightarrow\frac{{k}}{{x}^{\mathrm{2}} }={u}\Rightarrow\frac{{k}'}{{x}^{\mathrm{2}} }−\frac{\mathrm{2}{k}}{{x}^{\mathrm{3}} }+\frac{\mathrm{2}{k}}{{x}^{\mathrm{3}} }={x}^{\mathrm{3}} \\ $$$${k}'={x}^{\mathrm{5}} \Rightarrow{k}=\frac{{x}^{\mathrm{6}} }{\mathrm{6}}+{c} \\ $$$$\frac{{x}^{\mathrm{4}} }{\mathrm{6}}+\frac{{c}}{{x}^{\mathrm{2}} }={u} \\ $$$${y}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{4}} }{\mathrm{6}}+\frac{{c}}{{x}^{\mathrm{2}} }\right) \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com