Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 86111 by john santu last updated on 27/Mar/20

sin (((3π)/2)cos x) = −(1/2)

$$\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\mathrm{cos}\:{x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 27/Mar/20

⇔sin (((3π)/2)cos x) = sin (−(π/6))  ((3π)/2)cos x = −(π/6) + 2kπ  cos x = (2/(3π)) {−(π/6)+2kπ}  cos x = −(1/9)+((4k)/3)  x = cos^(−1) (((12k−1)/9)) + 2nπ

$$\Leftrightarrow\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{sin}\:\left(−\frac{\pi}{\mathrm{6}}\right) \\ $$$$\frac{\mathrm{3}\pi}{\mathrm{2}}\mathrm{cos}\:\mathrm{x}\:=\:−\frac{\pi}{\mathrm{6}}\:+\:\mathrm{2k}\pi \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\mathrm{3}\pi}\:\left\{−\frac{\pi}{\mathrm{6}}+\mathrm{2k}\pi\right\} \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:−\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{4k}}{\mathrm{3}} \\ $$$$\mathrm{x}\:=\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{12k}−\mathrm{1}}{\mathrm{9}}\right)\:+\:\mathrm{2n}\pi \\ $$

Answered by TANMAY PANACEA. last updated on 27/Mar/20

sin(((3π)/2)cosx)=sin(π+(π/6))  ((3π)/2)cosx=((7π)/6)  cosx=(7/6)×(2/3)=(7/9)=cosα  x=2nπ±α     [α=cos^(−1) ((7/9))]  ★  sin(((3π)/2)cosx)=−(1/2)=sin(((−π)/6))  ((3π)/2)cosx=((−π)/6)       cosx=((−1)/9)=cosβ  x=2nπ±β   [β=cos^(−1) (((−1)/9))]

$${sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}{cosx}\right)={sin}\left(\pi+\frac{\pi}{\mathrm{6}}\right) \\ $$$$\frac{\mathrm{3}\pi}{\mathrm{2}}{cosx}=\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$${cosx}=\frac{\mathrm{7}}{\mathrm{6}}×\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{7}}{\mathrm{9}}={cos}\alpha \\ $$$${x}=\mathrm{2}{n}\pi\pm\alpha\:\:\:\:\:\left[\alpha={cos}^{−\mathrm{1}} \left(\frac{\mathrm{7}}{\mathrm{9}}\right)\right] \\ $$$$\bigstar\:\:{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}{cosx}\right)=−\frac{\mathrm{1}}{\mathrm{2}}={sin}\left(\frac{−\pi}{\mathrm{6}}\right) \\ $$$$\frac{\mathrm{3}\pi}{\mathrm{2}}{cosx}=\frac{−\pi}{\mathrm{6}}\:\:\:\:\:\:\:{cosx}=\frac{−\mathrm{1}}{\mathrm{9}}={cos}\beta \\ $$$${x}=\mathrm{2}{n}\pi\pm\beta\:\:\:\left[\beta={cos}^{−\mathrm{1}} \left(\frac{−\mathrm{1}}{\mathrm{9}}\right)\right] \\ $$$$ \\ $$

Answered by mr W last updated on 27/Mar/20

sin (((3π)/2)cos x) = −(1/2)  ⇒((3π)/2)cos x = nπ−(−1)^n (π/6)  ⇒cos x =(2/3)[n−(−1)^n (1/6)]  ⇒−1≤(2/3)[n−(−1)^n (1/6)]≤1  ⇒n=−1, 0, 1  ⇒cos x =(2/3)[n−(−1)^n (1/6)]=−(5/9), −(1/9),  (7/9)  ⇒x=(2k+1)π±cos^(−1) (5/9)  ⇒x=(2k+1)π±cos^(−1) (1/9)  ⇒x=2kπ±cos^(−1) (7/9)

$$\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\mathrm{cos}\:{x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{3}\pi}{\mathrm{2}}\mathrm{cos}\:{x}\:=\:{n}\pi−\left(−\mathrm{1}\right)^{{n}} \frac{\pi}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{cos}\:{x}\:=\frac{\mathrm{2}}{\mathrm{3}}\left[{n}−\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{6}}\right] \\ $$$$\Rightarrow−\mathrm{1}\leqslant\frac{\mathrm{2}}{\mathrm{3}}\left[{n}−\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{6}}\right]\leqslant\mathrm{1} \\ $$$$\Rightarrow{n}=−\mathrm{1},\:\mathrm{0},\:\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:{x}\:=\frac{\mathrm{2}}{\mathrm{3}}\left[{n}−\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{6}}\right]=−\frac{\mathrm{5}}{\mathrm{9}},\:−\frac{\mathrm{1}}{\mathrm{9}},\:\:\frac{\mathrm{7}}{\mathrm{9}} \\ $$$$\Rightarrow{x}=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{9}} \\ $$$$\Rightarrow{x}=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\Rightarrow{x}=\mathrm{2}{k}\pi\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{7}}{\mathrm{9}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com