Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 84932 by jagoll last updated on 17/Mar/20

lim_(x→0)  ((sin 38x−38sin x)/(19x^3 )) =

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{38x}−\mathrm{38sin}\:\mathrm{x}}{\mathrm{19x}^{\mathrm{3}} }\:=\: \\ $$

Commented by john santu last updated on 17/Mar/20

lim_(x→0)  ((38cos 38x − 38cos x)/(3.19x^2 )) =  lim_(x→0)  ((2cos 38x−cos x)/(3x^2 )) =   lim_(x→0)  ((−76sin 38x+sin x)/(6x)) =  ((−76×38+1)/6) = −((2887)/6)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{38cos}\:\mathrm{38x}\:−\:\mathrm{38cos}\:\mathrm{x}}{\mathrm{3}.\mathrm{19x}^{\mathrm{2}} }\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\mathrm{38x}−\mathrm{cos}\:\mathrm{x}}{\mathrm{3x}^{\mathrm{2}} }\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{76sin}\:\mathrm{38x}+\mathrm{sin}\:\mathrm{x}}{\mathrm{6x}}\:= \\ $$$$\frac{−\mathrm{76}×\mathrm{38}+\mathrm{1}}{\mathrm{6}}\:=\:−\frac{\mathrm{2887}}{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com