Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83110 by 09658867628 last updated on 28/Feb/20

bounded by the curve y=(√(4-x)) y=0 y=1

$${bounded}\:{by}\:{the}\:{curve}\:{y}=\sqrt{\mathrm{4}-{x}}\:{y}=\mathrm{0}\:{y}=\mathrm{1} \\ $$

Commented by jagoll last updated on 28/Feb/20

Area = ∫_0 ^1 (4−y^2 ) dy   = 4y − (y^3 /3) ∣_0 ^1 = ((11)/3)

$$\mathrm{Area}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{4}−\mathrm{y}^{\mathrm{2}} \right)\:\mathrm{dy}\: \\ $$$$=\:\mathrm{4y}\:−\:\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{3}}\:\mid_{\mathrm{0}} ^{\mathrm{1}} =\:\frac{\mathrm{11}}{\mathrm{3}} \\ $$

Commented by mr W last updated on 28/Feb/20

correct is 3+(2/3)=((11)/3)

$${correct}\:{is}\:\mathrm{3}+\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{11}}{\mathrm{3}} \\ $$

Commented by jagoll last updated on 28/Feb/20

this question request volume   or area?

$$\mathrm{this}\:\mathrm{question}\:\mathrm{request}\:\mathrm{volume}\: \\ $$$$\mathrm{or}\:\mathrm{area}? \\ $$

Commented by mr W last updated on 28/Feb/20

area

$${area} \\ $$

Commented by jagoll last updated on 28/Feb/20

Commented by jagoll last updated on 28/Feb/20

where this area ?

$$\mathrm{where}\:\mathrm{this}\:\mathrm{area}\:? \\ $$

Commented by mr W last updated on 28/Feb/20

from y=0 to y=1.  not your method is wrong, but your  calculation is wrong. the result is  not (8/3), but ((11)/3).  ∫(4−y^2 )dy=4y−(y^3 /3)≠4y−((4y^3 )/3)    but we can also get the result without  integral, the area is 3+(2/3)=((11)/3).

$${from}\:{y}=\mathrm{0}\:{to}\:{y}=\mathrm{1}. \\ $$$${not}\:{your}\:{method}\:{is}\:{wrong},\:{but}\:{your} \\ $$$${calculation}\:{is}\:{wrong}.\:{the}\:{result}\:{is} \\ $$$${not}\:\frac{\mathrm{8}}{\mathrm{3}},\:{but}\:\frac{\mathrm{11}}{\mathrm{3}}. \\ $$$$\int\left(\mathrm{4}−{y}^{\mathrm{2}} \right){dy}=\mathrm{4}{y}−\frac{{y}^{\mathrm{3}} }{\mathrm{3}}\neq\mathrm{4}{y}−\frac{\mathrm{4}{y}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$ \\ $$$${but}\:{we}\:{can}\:{also}\:{get}\:{the}\:{result}\:{without} \\ $$$${integral},\:{the}\:{area}\:{is}\:\mathrm{3}+\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{11}}{\mathrm{3}}. \\ $$

Commented by mr W last updated on 28/Feb/20

Commented by jagoll last updated on 28/Feb/20

hahaha...yes sir. thank you

$$\mathrm{hahaha}...\mathrm{yes}\:\mathrm{sir}.\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by jagoll last updated on 28/Feb/20

but sir. i think this question not   complet. my understand the question  must be the area bounded the   curve y = (√(4−x)) , y=0 , y=1 , x = 0

$$\mathrm{but}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{think}\:\mathrm{this}\:\mathrm{question}\:\mathrm{not}\: \\ $$$$\mathrm{complet}.\:\mathrm{my}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{the}\: \\ $$$$\mathrm{curve}\:\mathrm{y}\:=\:\sqrt{\mathrm{4}−\mathrm{x}}\:,\:\mathrm{y}=\mathrm{0}\:,\:\mathrm{y}=\mathrm{1}\:,\:\mathrm{x}\:=\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com