Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82185 by jagoll last updated on 19/Feb/20

∫ (dx/(sec x + csc x)) = ?

$$\int\:\frac{{dx}}{\mathrm{sec}\:{x}\:+\:{csc}\:{x}}\:=\:?\: \\ $$

Commented by john santu last updated on 19/Feb/20

sec x+ csc x = (1/(cos x))+(1/(sin x))  ((sin x+cos x)/(sin x cos x)) .  ∫ ((sin x cos x)/(sin x + cos x)) dx =   let tan ((x/2))= t

$$\mathrm{sec}\:{x}+\:{csc}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+\frac{\mathrm{1}}{\mathrm{sin}\:{x}} \\ $$$$\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}\:. \\ $$$$\int\:\frac{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}\:{dx}\:=\: \\ $$$${let}\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)=\:{t}\: \\ $$

Commented by mathmax by abdo last updated on 19/Feb/20

let  I =∫   (dx/((1/(cosx)) +(1/(sinx)))) ⇒I =∫  ((cosx .sinx)/(cosx +sinx))dx  changement  tan((x/2))=t give I =∫ ((((1−t^2 )/(1+t^2 ))×((2t)/(1+t^2 )))/(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))))×((2dt)/(1+t^2 )) =∫((2t(1−t^2 ))/((1+t^2 )^2 (−t^2  +2t+1)))dt  =∫  ((2t(t^2 −1))/((t^2 +1)^2 (t^2 −2t−1)))dt =∫  ((2t^3 −2t)/((t^2  +1)^2 (t^2 −2t −1)))dt  t^2 −2t−1 =0→Δ^′ =1+1=2 ⇒t_1 =1+(√2)and t_2 =1−(√2)  let decompose  F(t)=((2t^3 −2t)/((t^2  +1)^2 (t−t_1 )(t−t_2 ))) ⇒F(t)=(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2  +1)) +((et +f)/((t^2  +1)^2 ))  ⇒∫ F(t)dt =aln∣t−t_1 ∣+bln∣t−t_2 ∣ +(c/2)ln(t^2  +1)+d arctan(t)  +∫ ((et +f)/((t^2  +1)^2 ))dt  rest calculus of coefficients ...be continued...

$${let}\:\:{I}\:=\int\:\:\:\frac{{dx}}{\frac{\mathrm{1}}{{cosx}}\:+\frac{\mathrm{1}}{{sinx}}}\:\Rightarrow{I}\:=\int\:\:\frac{{cosx}\:.{sinx}}{{cosx}\:+{sinx}}{dx}\:\:{changement} \\ $$$${tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give}\:{I}\:=\int\:\frac{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}×\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int\frac{\mathrm{2}{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(−{t}^{\mathrm{2}} \:+\mathrm{2}{t}+\mathrm{1}\right)}{dt} \\ $$$$=\int\:\:\frac{\mathrm{2}{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left({t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{1}\right)}{dt}\:=\int\:\:\frac{\mathrm{2}{t}^{\mathrm{3}} −\mathrm{2}{t}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \left({t}^{\mathrm{2}} −\mathrm{2}{t}\:−\mathrm{1}\right)}{dt} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{1}\:=\mathrm{0}\rightarrow\Delta^{'} =\mathrm{1}+\mathrm{1}=\mathrm{2}\:\Rightarrow{t}_{\mathrm{1}} =\mathrm{1}+\sqrt{\mathrm{2}}{and}\:{t}_{\mathrm{2}} =\mathrm{1}−\sqrt{\mathrm{2}}\:\:{let}\:{decompose} \\ $$$${F}\left({t}\right)=\frac{\mathrm{2}{t}^{\mathrm{3}} −\mathrm{2}{t}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)}\:\Rightarrow{F}\left({t}\right)=\frac{{a}}{{t}−{t}_{\mathrm{1}} }\:+\frac{{b}}{{t}−{t}_{\mathrm{2}} }\:+\frac{{ct}\:+{d}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{et}\:+{f}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\int\:{F}\left({t}\right){dt}\:={aln}\mid{t}−{t}_{\mathrm{1}} \mid+{bln}\mid{t}−{t}_{\mathrm{2}} \mid\:+\frac{{c}}{\mathrm{2}}{ln}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)+{d}\:{arctan}\left({t}\right) \\ $$$$+\int\:\frac{{et}\:+{f}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\:\:{rest}\:{calculus}\:{of}\:{coefficients}\:...{be}\:{continued}... \\ $$$$ \\ $$

Answered by TANMAY PANACEA last updated on 20/Feb/20

∫((sinx+cosx)/(sinxcosx))dx  2∫((sinx+cosx)/(1−(1−2sinxcosx)))dx  2∫((d(sinx−cosx))/(1−(sinx−cosx)^2 )) [formula ∫(da/(1−a^2 ))]  ln(((sinx−cosx+1)/(sinx−cosx−1)))+c

$$\int\frac{{sinx}+{cosx}}{{sinxcosx}}{dx} \\ $$$$\mathrm{2}\int\frac{{sinx}+{cosx}}{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}{sinxcosx}\right)}{dx} \\ $$$$\mathrm{2}\int\frac{{d}\left({sinx}−{cosx}\right)}{\mathrm{1}−\left({sinx}−{cosx}\right)^{\mathrm{2}} }\:\left[{formula}\:\int\frac{{da}}{\mathrm{1}−{a}^{\mathrm{2}} }\right] \\ $$$${ln}\left(\frac{{sinx}−{cosx}+\mathrm{1}}{{sinx}−{cosx}−\mathrm{1}}\right)+{c} \\ $$

Commented by jagoll last updated on 20/Feb/20

(1/(csc x+sec x)) = (1/((1/(sin x))+(1/(cos x))))  = ((sin x. cos x)/(sin x+cos x)) ≠ ((sin x + cos x)/(sin x cos x))  sorry sir. your answer not correct

$$\frac{\mathrm{1}}{{csc}\:{x}+\mathrm{sec}\:{x}}\:=\:\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}} \\ $$$$=\:\frac{\mathrm{sin}\:{x}.\:\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:\neq\:\frac{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}} \\ $$$${sorry}\:{sir}.\:{your}\:{answer}\:{not}\:{correct} \\ $$

Commented by TANMAY PANACEA last updated on 20/Feb/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com