Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80828 by jagoll last updated on 07/Feb/20

given   lim_(x→−∞)  [(√(2x+p)) −(√(2x+1))]×(√(2x−p ))= (1/4)p  find p .

$${given}\: \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left[\sqrt{\mathrm{2}{x}+{p}}\:−\sqrt{\mathrm{2}{x}+\mathrm{1}}\right]×\sqrt{\mathrm{2}{x}−{p}\:}=\:\frac{\mathrm{1}}{\mathrm{4}}{p} \\ $$$${find}\:{p}\:. \\ $$

Commented by john santu last updated on 07/Feb/20

lim_(x→−∞) (√(4x^2 −p^2  ))−(√(4x^2 +(2−2p)x−p))=(1/4)p  similar to  lim_(x→+∞) (√(4x^2 −p^2 ))−(√(4x^2 +(2p−2)x−p))=(1/4)p  ((0−(2p−2)/(2.2)) = (p/4)⇒p =(2/3)

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −{p}^{\mathrm{2}} \:}−\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{2}{p}\right){x}−{p}}=\frac{\mathrm{1}}{\mathrm{4}}{p} \\ $$$${similar}\:{to} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −{p}^{\mathrm{2}} }−\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\left(\mathrm{2}{p}−\mathrm{2}\right){x}−{p}}=\frac{\mathrm{1}}{\mathrm{4}}{p} \\ $$$$\frac{\mathrm{0}−\left(\mathrm{2}{p}−\mathrm{2}\right.}{\mathrm{2}.\mathrm{2}}\:=\:\frac{{p}}{\mathrm{4}}\Rightarrow{p}\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by jagoll last updated on 07/Feb/20

thx

$${thx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com