Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80748 by jagoll last updated on 06/Feb/20

lim_(x→∞)  (((x!)/x^x ))^(1/x)  = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \:=\:? \\ $$

Commented by john santu last updated on 06/Feb/20

let y = lim_(x→∞ ) (((x!)/x^x ))^(1/x)   ln(y)=lim_(x→∞ ) ln(((x!)/x^x ))^(1/x)   ln(y)=lim_(x→∞)  ln(((x!)/x^x ))^(1/x)   ln(y)=lim_(x→∞) (1/x)ln(((x!)/x^x ))  = lim_(x→∞) (1/x)(ln((1/x))+ln((2/x))+...+ln(((x−1)/x))+ln((x/x)))  = ∫_0 ^1 ln(x)dx = −1  ln(y)= −1 ⇒ ∴ y = e^(−1)   lim_(x→∞)  (((x!)/x^x ))^(1/x) = (1/e)

$${let}\:{y}\:=\:\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$${ln}\left({y}\right)=\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}{ln}\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$${ln}\left({y}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{ln}\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$${ln}\left({y}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}!}{{x}^{{x}} }\right) \\ $$$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\left({ln}\left(\frac{\mathrm{1}}{{x}}\right)+{ln}\left(\frac{\mathrm{2}}{{x}}\right)+...+{ln}\left(\frac{{x}−\mathrm{1}}{{x}}\right)+{ln}\left(\frac{{x}}{{x}}\right)\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){dx}\:=\:−\mathrm{1} \\ $$$${ln}\left({y}\right)=\:−\mathrm{1}\:\Rightarrow\:\therefore\:{y}\:=\:{e}^{−\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} =\:\frac{\mathrm{1}}{{e}} \\ $$

Commented by jagoll last updated on 06/Feb/20

thanks

$${thanks} \\ $$

Commented by mathmax by abdo last updated on 06/Feb/20

let f(x)=(((x!)/x^x ))^(1/x)   we have x! ∼x^x  e^(−x) (√(2πx))(x→+∞) ⇒  f(x)∼(e^(−x) (√(2πx)))^(1/x) =e^((1/x)ln(e^(−x) (√(2πx))))  =e^(−1 +(1/(2x))ln(2πx))  ⇒e^(−1) =(1/e)(x→+∞)  ⇒lim_(x→+∞)  f(x)=(1/e)

$${let}\:{f}\left({x}\right)=\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \:\:{we}\:{have}\:{x}!\:\sim{x}^{{x}} \:{e}^{−{x}} \sqrt{\mathrm{2}\pi{x}}\left({x}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${f}\left({x}\right)\sim\left({e}^{−{x}} \sqrt{\mathrm{2}\pi{x}}\right)^{\frac{\mathrm{1}}{{x}}} ={e}^{\frac{\mathrm{1}}{{x}}{ln}\left({e}^{−{x}} \sqrt{\mathrm{2}\pi{x}}\right)} \:={e}^{−\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}{x}}{ln}\left(\mathrm{2}\pi{x}\right)} \:\Rightarrow{e}^{−\mathrm{1}} =\frac{\mathrm{1}}{{e}}\left({x}\rightarrow+\infty\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow+\infty} \:{f}\left({x}\right)=\frac{\mathrm{1}}{{e}} \\ $$

Answered by MJS last updated on 06/Feb/20

lim_(x→∞)  (((x!)/x^x ))^(1/x)  =       [x!≈(x^x /e^x )(√(2πx))  Sterling′s approximation]  =(1/e)lim_(x→∞)  (2πx)^(1/(2x))  =(1/e)       [lim_(x→∞)  C_1 ^(1/x) =1 ∀C_1 >0]       [lim_(x→∞)  x^(1/(C_2 x))  =lim_(x→∞)  e^((ln  x)/(C_2 x)) =10^0 =1 ∀C_2 ≠0]

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \:= \\ $$$$\:\:\:\:\:\left[{x}!\approx\frac{{x}^{{x}} }{\mathrm{e}^{{x}} }\sqrt{\mathrm{2}\pi{x}}\:\:\mathrm{Sterling}'\mathrm{s}\:\mathrm{approximation}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{e}}\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}\pi{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}{x}}} \:=\frac{\mathrm{1}}{\mathrm{e}} \\ $$$$\:\:\:\:\:\left[\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{C}_{\mathrm{1}} ^{\frac{\mathrm{1}}{{x}}} =\mathrm{1}\:\forall{C}_{\mathrm{1}} >\mathrm{0}\right] \\ $$$$\:\:\:\:\:\left[\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\frac{\mathrm{1}}{{C}_{\mathrm{2}} {x}}} \:=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{e}^{\frac{\mathrm{ln}\:\:{x}}{{C}_{\mathrm{2}} {x}}} =\mathrm{10}^{\mathrm{0}} =\mathrm{1}\:\forall{C}_{\mathrm{2}} \neq\mathrm{0}\right] \\ $$

Commented by jagoll last updated on 06/Feb/20

mister the answer (1/e) mister  what wrong?

$${mister}\:{the}\:{answer}\:\frac{\mathrm{1}}{{e}}\:{mister} \\ $$$${what}\:{wrong}? \\ $$

Commented by MJS last updated on 06/Feb/20

the answer is there in line 3

$$\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{there}\:\mathrm{in}\:\mathrm{line}\:\mathrm{3} \\ $$

Commented by jagoll last updated on 06/Feb/20

oo thank you mister. i see the  last line

$${oo}\:{thank}\:{you}\:{mister}.\:{i}\:{see}\:{the} \\ $$$${last}\:{line} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com