Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78399 by john santu last updated on 17/Jan/20

dear sir W, Mjs   the set {1,4,n} have the condition that   if two different elements are  selected and 2112 is added to  the result , then the result   is a perfect square if n is a   positif number . then the number   of possible values of n is   (A) 8    (B) 7     (C) 6     (D) 5  (E) 4

$${dear}\:{sir}\:{W},\:{Mjs}\: \\ $$$${the}\:{set}\:\left\{\mathrm{1},\mathrm{4},{n}\right\}\:{have}\:{the}\:{condition}\:{that}\: \\ $$$${if}\:{two}\:{different}\:{elements}\:{are} \\ $$$${selected}\:{and}\:\mathrm{2112}\:{is}\:{added}\:{to} \\ $$$${the}\:{result}\:,\:{then}\:{the}\:{result}\: \\ $$$${is}\:{a}\:{perfect}\:{square}\:{if}\:{n}\:{is}\:{a}\: \\ $$$${positif}\:{number}\:.\:{then}\:{the}\:{number}\: \\ $$$${of}\:{possible}\:{values}\:{of}\:{n}\:{is}\: \\ $$$$\left({A}\right)\:\mathrm{8}\:\:\:\:\left({B}\right)\:\mathrm{7}\:\:\:\:\:\left({C}\right)\:\mathrm{6}\:\:\:\:\:\left({D}\right)\:\mathrm{5} \\ $$$$\left({E}\right)\:\mathrm{4} \\ $$

Commented by mr W last updated on 17/Jan/20

question is not clear!  what means “two different elements  are selectet and 2112 is added to the  result” when two different elements  are selected, say 1 and 4, what is the  result? the sum of these two elements  or the product of these elements or  something else?  please make the question clear.

$${question}\:{is}\:{not}\:{clear}! \\ $$$${what}\:{means}\:``{two}\:{different}\:{elements} \\ $$$${are}\:{selectet}\:{and}\:\mathrm{2112}\:{is}\:{added}\:{to}\:{the} \\ $$$${result}''\:{when}\:{two}\:{different}\:{elements} \\ $$$${are}\:{selected},\:{say}\:\mathrm{1}\:{and}\:\mathrm{4},\:{what}\:{is}\:{the} \\ $$$${result}?\:{the}\:{sum}\:{of}\:{these}\:{two}\:{elements} \\ $$$${or}\:{the}\:{product}\:{of}\:{these}\:{elements}\:{or} \\ $$$${something}\:{else}? \\ $$$${please}\:{make}\:{the}\:{question}\:{clear}.\: \\ $$

Commented by john santu last updated on 17/Jan/20

the purpose of this problem   is if 2 members are selected  from the set for example   1 and n then 1×n + 2112 the  result are quadratic number

$${the}\:{purpose}\:{of}\:{this}\:{problem}\: \\ $$$${is}\:{if}\:\mathrm{2}\:{members}\:{are}\:{selected} \\ $$$${from}\:{the}\:{set}\:{for}\:{example}\: \\ $$$$\mathrm{1}\:{and}\:{n}\:{then}\:\mathrm{1}×{n}\:+\:\mathrm{2112}\:{the} \\ $$$${result}\:{are}\:{quadratic}\:{number} \\ $$

Commented by mr W last updated on 17/Jan/20

now clear! so the question should be  ...  if two different elements are  selected and 2112 is added to  their product , then the result   ...

$${now}\:{clear}!\:{so}\:{the}\:{question}\:{should}\:{be} \\ $$$$... \\ $$$${if}\:{two}\:{different}\:{elements}\:{are} \\ $$$${selected}\:{and}\:\mathrm{2112}\:{is}\:{added}\:{to} \\ $$$${their}\:{product}\:,\:{then}\:{the}\:{result}\: \\ $$$$... \\ $$

Commented by john santu last updated on 17/Jan/20

so how much is the value of n  , sir?

$${so}\:{how}\:{much}\:{is}\:{the}\:{value}\:{of}\:{n} \\ $$$$,\:{sir}? \\ $$

Commented by john santu last updated on 17/Jan/20

i got infinity sir. is right?

$${i}\:{got}\:{infinity}\:{sir}.\:{is}\:{right}? \\ $$

Commented by MJS last updated on 17/Jan/20

1×4+2112=2116=46^2   ⇒ n can be any number  1×n+2112=p^2  ⇒ infinite solutions for n  4×n+2112=p^2  ⇒ infinite solutions for n

$$\mathrm{1}×\mathrm{4}+\mathrm{2112}=\mathrm{2116}=\mathrm{46}^{\mathrm{2}} \\ $$$$\Rightarrow\:{n}\:\mathrm{can}\:\mathrm{be}\:\mathrm{any}\:\mathrm{number} \\ $$$$\mathrm{1}×{n}+\mathrm{2112}={p}^{\mathrm{2}} \:\Rightarrow\:\mathrm{infinite}\:\mathrm{solutions}\:\mathrm{for}\:{n} \\ $$$$\mathrm{4}×{n}+\mathrm{2112}={p}^{\mathrm{2}} \:\Rightarrow\:\mathrm{infinite}\:\mathrm{solutions}\:\mathrm{for}\:{n} \\ $$

Commented by john santu last updated on 17/Jan/20

yes sir. i got the same answer

$${yes}\:{sir}.\:{i}\:{got}\:{the}\:{same}\:{answer} \\ $$

Commented by mr W last updated on 17/Jan/20

but what if n should also be a perfect  square?  1×n+2112=p^2   4×n+2112=p^2

$${but}\:{what}\:{if}\:{n}\:{should}\:{also}\:{be}\:{a}\:{perfect} \\ $$$${square}? \\ $$$$\mathrm{1}×{n}+\mathrm{2112}={p}^{\mathrm{2}} \\ $$$$\mathrm{4}×{n}+\mathrm{2112}={p}^{\mathrm{2}} \\ $$

Commented by john santu last updated on 17/Jan/20

n is positive number sir

$${n}\:{is}\:{positive}\:{number}\:{sir} \\ $$

Commented by mr W last updated on 17/Jan/20

i know. if n is only positive integer,  there are infinite possibilities. but  if n should also be perfect square,  then i think the possibilities are  finite!

$${i}\:{know}.\:{if}\:{n}\:{is}\:{only}\:{positive}\:{integer}, \\ $$$${there}\:{are}\:{infinite}\:{possibilities}.\:{but} \\ $$$${if}\:{n}\:{should}\:{also}\:{be}\:{perfect}\:{square}, \\ $$$${then}\:{i}\:{think}\:{the}\:{possibilities}\:{are} \\ $$$${finite}! \\ $$

Commented by MJS last updated on 17/Jan/20

let n=(p−q)^2   (1)  (p−q)^2 +2112=p^2  ⇒ p=((q^2 +2112)/(2q))  p, q∈N∧0<q≤p ⇒ 0<q≤45  ⇒  q∈{2, 4, 6, 8, 12, 16, 22, 24, 32, 44}  p∈{529, 266, 179, 136, 94, 74, 59, 56, 49, 46}  n∈{277729, 68644, 29929, 16384, 6724, 3364, 1369, 1024, 289, 4}    (2)  4(p−q)^2 +2112=p^2  ⇒ q=p−((√(p^2 −2112))/2)  ⇒  p∈{46, 56, 74, 94, 136, 266}  q∈{45, 40, 45, 53, 72, 135}  n∈{17161, 4096, 1681, 841, 256, 1}    still infinite possibilities for n with  1×4+2112=46^2

$$\mathrm{let}\:{n}=\left({p}−{q}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\:\:\left({p}−{q}\right)^{\mathrm{2}} +\mathrm{2112}={p}^{\mathrm{2}} \:\Rightarrow\:{p}=\frac{{q}^{\mathrm{2}} +\mathrm{2112}}{\mathrm{2}{q}} \\ $$$${p},\:{q}\in\mathbb{N}\wedge\mathrm{0}<{q}\leqslant{p}\:\Rightarrow\:\mathrm{0}<{q}\leqslant\mathrm{45} \\ $$$$\Rightarrow \\ $$$${q}\in\left\{\mathrm{2},\:\mathrm{4},\:\mathrm{6},\:\mathrm{8},\:\mathrm{12},\:\mathrm{16},\:\mathrm{22},\:\mathrm{24},\:\mathrm{32},\:\mathrm{44}\right\} \\ $$$${p}\in\left\{\mathrm{529},\:\mathrm{266},\:\mathrm{179},\:\mathrm{136},\:\mathrm{94},\:\mathrm{74},\:\mathrm{59},\:\mathrm{56},\:\mathrm{49},\:\mathrm{46}\right\} \\ $$$${n}\in\left\{\mathrm{277729},\:\mathrm{68644},\:\mathrm{29929},\:\mathrm{16384},\:\mathrm{6724},\:\mathrm{3364},\:\mathrm{1369},\:\mathrm{1024},\:\mathrm{289},\:\mathrm{4}\right\} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{4}\left({p}−{q}\right)^{\mathrm{2}} +\mathrm{2112}={p}^{\mathrm{2}} \:\Rightarrow\:{q}={p}−\frac{\sqrt{{p}^{\mathrm{2}} −\mathrm{2112}}}{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${p}\in\left\{\mathrm{46},\:\mathrm{56},\:\mathrm{74},\:\mathrm{94},\:\mathrm{136},\:\mathrm{266}\right\} \\ $$$${q}\in\left\{\mathrm{45},\:\mathrm{40},\:\mathrm{45},\:\mathrm{53},\:\mathrm{72},\:\mathrm{135}\right\} \\ $$$${n}\in\left\{\mathrm{17161},\:\mathrm{4096},\:\mathrm{1681},\:\mathrm{841},\:\mathrm{256},\:\mathrm{1}\right\} \\ $$$$ \\ $$$$\mathrm{still}\:\mathrm{infinite}\:\mathrm{possibilities}\:\mathrm{for}\:{n}\:\mathrm{with} \\ $$$$\mathrm{1}×\mathrm{4}+\mathrm{2112}=\mathrm{46}^{\mathrm{2}} \\ $$

Commented by Rasheed.Sindhi last updated on 17/Jan/20

n should be such that  (1×n+2112) & (4×n+2112)  both are perfect squares.

$${n}\:{should}\:{be}\:{such}\:{that} \\ $$$$\left(\mathrm{1}×{n}+\mathrm{2112}\right)\:\&\:\left(\mathrm{4}×{n}+\mathrm{2112}\right) \\ $$$$\boldsymbol{{both}}\:{are}\:{perfect}\:{squares}. \\ $$

Commented by john santu last updated on 17/Jan/20

yes sir. what is value of n possible?

$${yes}\:{sir}.\:{what}\:{is}\:{value}\:{of}\:{n}\:{possible}? \\ $$$$ \\ $$

Commented by john santu last updated on 17/Jan/20

in my book the answer is 7

$${in}\:{my}\:{book}\:{the}\:{answer}\:{is}\:\mathrm{7} \\ $$

Answered by john santu last updated on 17/Jan/20

1×n+2112 =k^2  ⇒n=k^2 −2112  4×n+2112=p^2  ⇒n=((p^2 −2112)/4)  k^2 −2112=((p^2 −2112)/4)  k^2 −(p^2 /4)=2640 ⇒(k−(p/2))(k+(p/2))=2640

$$\mathrm{1}×{n}+\mathrm{2112}\:={k}^{\mathrm{2}} \:\Rightarrow{n}={k}^{\mathrm{2}} −\mathrm{2112} \\ $$$$\mathrm{4}×{n}+\mathrm{2112}={p}^{\mathrm{2}} \:\Rightarrow{n}=\frac{{p}^{\mathrm{2}} −\mathrm{2112}}{\mathrm{4}} \\ $$$${k}^{\mathrm{2}} −\mathrm{2112}=\frac{{p}^{\mathrm{2}} −\mathrm{2112}}{\mathrm{4}} \\ $$$${k}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{2640}\:\Rightarrow\left({k}−\frac{{p}}{\mathrm{2}}\right)\left({k}+\frac{{p}}{\mathrm{2}}\right)=\mathrm{2640} \\ $$

Commented by Rasheed.Sindhi last updated on 17/Jan/20

But sir n is positive.

$${But}\:{sir}\:{n}\:{is}\:{positive}. \\ $$

Commented by MJS last updated on 17/Jan/20

yes. I posted all 9 solutions, then I wrote the  last 2 lines...

$$\mathrm{yes}.\:\mathrm{I}\:\mathrm{posted}\:{all}\:\mathrm{9}\:\mathrm{solutions},\:\mathrm{then}\:\mathrm{I}\:\mathrm{wrote}\:\mathrm{the} \\ $$$$\mathrm{last}\:\mathrm{2}\:\mathrm{lines}... \\ $$

Commented by MJS last updated on 17/Jan/20

error in last line  k^2 −(p^2 /4)=1584  your idea is good, it leads to  n∈{−512, −87, 97, 697, 3072, 8497, 16113, 37888, 155497}  since we′re looking for n∈N we have indeed  7 solutions

$$\mathrm{error}\:\mathrm{in}\:\mathrm{last}\:\mathrm{line} \\ $$$${k}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1584} \\ $$$$\mathrm{your}\:\mathrm{idea}\:\mathrm{is}\:\mathrm{good},\:\mathrm{it}\:\mathrm{leads}\:\mathrm{to} \\ $$$${n}\in\left\{−\mathrm{512},\:−\mathrm{87},\:\mathrm{97},\:\mathrm{697},\:\mathrm{3072},\:\mathrm{8497},\:\mathrm{16113},\:\mathrm{37888},\:\mathrm{155497}\right\} \\ $$$$\mathrm{since}\:\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:{n}\in\mathbb{N}\:\mathrm{we}\:\mathrm{have}\:\mathrm{indeed} \\ $$$$\mathrm{7}\:\mathrm{solutions} \\ $$

Commented by john santu last updated on 17/Jan/20

waw..thanks you sir

$${waw}..{thanks}\:{you}\:{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 17/Jan/20

⇒ { ((1×4+2112=46^2 )),((1×n+2112 is perfect square)),((4×n+2112 is perfect square)) :}          4×n+2112 is perfect square                ⇒n+528 is perfect square  ⇒ { ((n+2112 is perfect square)),((n+528 is perfect square)) :}  Let n+528=q^2           n+2112=n+528+1584=p^2 >q^2           q^2 +1584=p^2          (p+q)(p−q)=1584=2^4 .3^2 .11  p,q∈Z^+ ∧ p>q⇒p+q>p−q  •For p,q being whole numbers  p+q and p−q are both even.    p+q=44⇒p−q=36  p+q=48⇒p−q=33 (rejected)  p+q=66⇒p−q=24  p+q=88⇒p−q=18  Continue

$$\Rightarrow\begin{cases}{\mathrm{1}×\mathrm{4}+\mathrm{2112}=\mathrm{46}^{\mathrm{2}} }\\{\mathrm{1}×{n}+\mathrm{2112}\:{is}\:{perfect}\:{square}}\\{\mathrm{4}×{n}+\mathrm{2112}\:{is}\:{perfect}\:{square}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{4}×{n}+\mathrm{2112}\:{is}\:{perfect}\:{square} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{n}+\mathrm{528}\:{is}\:{perfect}\:{square} \\ $$$$\Rightarrow\begin{cases}{{n}+\mathrm{2112}\:{is}\:{perfect}\:{square}}\\{{n}+\mathrm{528}\:{is}\:{perfect}\:{square}}\end{cases} \\ $$$${Let}\:{n}+\mathrm{528}={q}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{n}+\mathrm{2112}={n}+\mathrm{528}+\mathrm{1584}={p}^{\mathrm{2}} >{q}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{q}^{\mathrm{2}} +\mathrm{1584}={p}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\left({p}+{q}\right)\left({p}−{q}\right)=\mathrm{1584}=\mathrm{2}^{\mathrm{4}} .\mathrm{3}^{\mathrm{2}} .\mathrm{11} \\ $$$${p},{q}\in\mathbb{Z}^{+} \wedge\:{p}>{q}\Rightarrow{p}+{q}>{p}−{q} \\ $$$$\bullet{For}\:{p},{q}\:{being}\:{whole}\:{numbers} \\ $$$${p}+{q}\:{and}\:{p}−{q}\:{are}\:{both}\:{even}. \\ $$$$ \\ $$$${p}+{q}=\mathrm{44}\Rightarrow{p}−{q}=\mathrm{36} \\ $$$${p}+{q}=\mathrm{48}\Rightarrow{p}−{q}=\mathrm{33}\:\left({rejected}\right) \\ $$$${p}+{q}=\mathrm{66}\Rightarrow{p}−{q}=\mathrm{24} \\ $$$${p}+{q}=\mathrm{88}\Rightarrow{p}−{q}=\mathrm{18} \\ $$$${Continue} \\ $$

Commented by john santu last updated on 17/Jan/20

thanks you

$${thanks}\:{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com