Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 7824 by ridwan balatif last updated on 17/Sep/16

Commented by Yozzia last updated on 17/Sep/16

n×n!=(n+1−1)n!=(n+1)!−n!  ⇒Σ_(i=1) ^n r!r=(n+1)!−1

$${n}×{n}!=\left({n}+\mathrm{1}−\mathrm{1}\right){n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{r}!{r}=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$

Commented by prakash jain last updated on 17/Sep/16

English translation, please

$$\mathrm{English}\:\mathrm{translation},\:\mathrm{please} \\ $$

Commented by ridwan balatif last updated on 17/Sep/16

you need to count  1.1!+2.2!+...+n.n!

$${you}\:{need}\:{to}\:{count} \\ $$$$\mathrm{1}.\mathrm{1}!+\mathrm{2}.\mathrm{2}!+...+{n}.{n}! \\ $$

Commented by FilupSmith last updated on 17/Sep/16

1×1!+2×2!+...+n×n!  =Σ_(k=1) ^n k(k!)  =Σ_(k=1) ^n k^2 (k−1)!

$$\mathrm{1}×\mathrm{1}!+\mathrm{2}×\mathrm{2}!+...+{n}×{n}! \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}!\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \left({k}−\mathrm{1}\right)! \\ $$

Answered by prakash jain last updated on 02/Oct/16

see comments

$$\mathrm{see}\:\mathrm{comments} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com