Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77219 by john santu last updated on 04/Jan/20

if log_9 (a)=log_4 (a+b)=log_6 (b)   what is (a/b) ?

$${if}\:\mathrm{log}_{\mathrm{9}} \left({a}\right)=\mathrm{log}_{\mathrm{4}} \left({a}+{b}\right)=\mathrm{log}_{\mathrm{6}} \left({b}\right)\: \\ $$$${what}\:{is}\:\frac{{a}}{{b}}\:? \\ $$

Answered by jagoll last updated on 04/Jan/20

suppose log_9 (a)= t .  ⇒ a = 9^t , a+b = 4^t  and b = 6^t   so we written ⇒ 9^t  + 6^t  = 4^(t )   (9^t /6^t )+1=(4^t /6^t ) ⇒ ((3/2))^t −((2/3))^t +1=0  let ((3/2))^t = x ⇒ x−(1/x)+1=0  x^2 +x−1=0 ⇒ x = ((−1+ (√5))/2)  so we get x = (3^t /2^t )= (((3×3)/(3×2)))^t = (9^t /6^t )=(((√5)−1)/2)=(a/b)  (it′s namely ′The Golden Ratio′

$$\mathrm{suppose}\:\mathrm{log}_{\mathrm{9}} \left(\mathrm{a}\right)=\:\mathrm{t}\:. \\ $$$$\Rightarrow\:\mathrm{a}\:=\:\mathrm{9}^{\mathrm{t}} ,\:\mathrm{a}+\mathrm{b}\:=\:\mathrm{4}^{\mathrm{t}} \:\mathrm{and}\:\mathrm{b}\:=\:\mathrm{6}^{\mathrm{t}} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{written}\:\Rightarrow\:\mathrm{9}^{\mathrm{t}} \:+\:\mathrm{6}^{\mathrm{t}} \:=\:\mathrm{4}^{\mathrm{t}\:} \\ $$$$\frac{\mathrm{9}^{\mathrm{t}} }{\mathrm{6}^{\mathrm{t}} }+\mathrm{1}=\frac{\mathrm{4}^{\mathrm{t}} }{\mathrm{6}^{\mathrm{t}} }\:\Rightarrow\:\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{t}} −\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{t}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{let}\:\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{t}} =\:\mathrm{x}\:\Rightarrow\:\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}=\mathrm{0}\:\Rightarrow\:\mathrm{x}\:=\:\frac{−\mathrm{1}+\:\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get}\:\mathrm{x}\:=\:\frac{\mathrm{3}^{\mathrm{t}} }{\mathrm{2}^{\mathrm{t}} }=\:\left(\frac{\mathrm{3}×\mathrm{3}}{\mathrm{3}×\mathrm{2}}\right)^{\mathrm{t}} =\:\frac{\mathrm{9}^{\mathrm{t}} }{\mathrm{6}^{\mathrm{t}} }=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{a}}{\mathrm{b}} \\ $$$$\left(\mathrm{it}'\mathrm{s}\:\mathrm{namely}\:'\mathrm{The}\:\mathrm{Golden}\:\mathrm{Ratio}'\right. \\ $$$$ \\ $$

Commented by jagoll last updated on 04/Jan/20

≈ 0.6180

$$\approx\:\mathrm{0}.\mathrm{6180} \\ $$

Commented by john santu last updated on 05/Jan/20

thanks you

$${thanks}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com