Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 7608 by Tawakalitu. last updated on 06/Sep/16

If  x = cosΘ − sinΘ  and  y = cos2Θ  Show that,    y = x(√(2 − x^2 ))

$${If}\:\:{x}\:=\:{cos}\Theta\:−\:{sin}\Theta \\ $$$${and}\:\:{y}\:=\:{cos}\mathrm{2}\Theta \\ $$$${Show}\:{that},\:\: \\ $$$${y}\:=\:{x}\sqrt{\mathrm{2}\:−\:{x}^{\mathrm{2}} } \\ $$

Commented by sou1618 last updated on 06/Sep/16

(√(2−x^2 ))=(√(1+2cosθsinθ))  =∣cosθ+sinθ∣  so  x(√(2−x))=(cosθ−sinθ)∣cosθ+sinθ∣    y=cos2θ=cos^2 θ−sin^2 θ       =(cosθ−sinθ)(cosθ+sinθ)      when (cosθ+sinθ)≥0  y=x(√(2−x^2 ))  when (cosθ+sinθ)<0  y≠x(√(2−x^2 ))

$$\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }=\sqrt{\mathrm{1}+\mathrm{2}{cos}\theta{sin}\theta} \\ $$$$=\mid{cos}\theta+{sin}\theta\mid \\ $$$${so} \\ $$$${x}\sqrt{\mathrm{2}−{x}}=\left({cos}\theta−{sin}\theta\right)\mid{cos}\theta+{sin}\theta\mid \\ $$$$ \\ $$$${y}={cos}\mathrm{2}\theta={cos}^{\mathrm{2}} \theta−{sin}^{\mathrm{2}} \theta \\ $$$$\:\:\:\:\:=\left({cos}\theta−{sin}\theta\right)\left({cos}\theta+{sin}\theta\right) \\ $$$$ \\ $$$$ \\ $$$${when}\:\left({cos}\theta+{sin}\theta\right)\geqslant\mathrm{0} \\ $$$${y}={x}\sqrt{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$${when}\:\left({cos}\theta+{sin}\theta\right)<\mathrm{0} \\ $$$${y}\neq{x}\sqrt{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 06/Sep/16

Thank you sir

$${Thank}\:{you}\:{sir} \\ $$

Commented by Tawakalitu. last updated on 06/Sep/16

i appreciate

$${i}\:{appreciate} \\ $$

Answered by sandy_suhendra last updated on 06/Sep/16

x(√(2−x^2 ))  =(cosθ−sinθ)(√(2(cos^2 θ+sin^2 θ)−(cosθ−sinθ)^2 ))  =(cosθ−sinθ)(√(2cos^2 θ+2sin^2 θ)−(cos^2 θ+sin^2 θ−2sinθcosθ)))  =(cosθ−sinθ)(√(cos^2 θ+sin^2 θ+2sinθcosθ))  =(cosθ−sinθ)(√((cosθ+sinθ)^2 ))  =(cosθ−sinθ)(cosθ+sinθ)  =cos^2 θ−sin^2 θ  =cos2θ  =y

$${x}\sqrt{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$$=\left({cos}\theta−{sin}\theta\right)\sqrt{\mathrm{2}\left({cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta\right)−\left({cos}\theta−{sin}\theta\right)^{\mathrm{2}} } \\ $$$$\left.=\left({cos}\theta−{sin}\theta\right)\sqrt{\left.\mathrm{2}{cos}^{\mathrm{2}} \theta+\mathrm{2}{sin}^{\mathrm{2}} \theta\right)−\left({cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta−\mathrm{2}{sin}\theta{cos}\theta\right.}\right) \\ $$$$=\left({cos}\theta−{sin}\theta\right)\sqrt{{cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta+\mathrm{2}{sin}\theta{cos}\theta} \\ $$$$=\left({cos}\theta−{sin}\theta\right)\sqrt{\left({cos}\theta+{sin}\theta\right)^{\mathrm{2}} } \\ $$$$=\left({cos}\theta−{sin}\theta\right)\left({cos}\theta+{sin}\theta\right) \\ $$$$={cos}^{\mathrm{2}} \theta−{sin}^{\mathrm{2}} \theta \\ $$$$={cos}\mathrm{2}\theta \\ $$$$={y} \\ $$

Commented by Tawakalitu. last updated on 06/Sep/16

i really appreciate your effort sir. thanks so much.

$${i}\:{really}\:{appreciate}\:{your}\:{effort}\:{sir}.\:{thanks}\:{so}\:{much}. \\ $$

Commented by sou1618 last updated on 06/Sep/16

(√((cosθ+sinθ)^2 ))−(cosθ+sinθ)=^(??) 0  if θ=0  (√((1+0)^2 ))−(1+0)=0  ifθ=π  (√((0−1)^2 ))−(0−1)=2    I think (√a^2 )=∣a∣  e.g.  a=−2     (√((−2)^2 ))=2

$$\sqrt{\left({cos}\theta+{sin}\theta\right)^{\mathrm{2}} }−\left({cos}\theta+{sin}\theta\right)\overset{??} {=}\mathrm{0} \\ $$$${if}\:\theta=\mathrm{0} \\ $$$$\sqrt{\left(\mathrm{1}+\mathrm{0}\right)^{\mathrm{2}} }−\left(\mathrm{1}+\mathrm{0}\right)=\mathrm{0} \\ $$$${if}\theta=\pi \\ $$$$\sqrt{\left(\mathrm{0}−\mathrm{1}\right)^{\mathrm{2}} }−\left(\mathrm{0}−\mathrm{1}\right)=\mathrm{2} \\ $$$$ \\ $$$${I}\:{think}\:\sqrt{{a}^{\mathrm{2}} }=\mid{a}\mid \\ $$$${e}.{g}. \\ $$$${a}=−\mathrm{2} \\ $$$$\:\:\:\sqrt{\left(−\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{2} \\ $$

Commented by Rasheed Soomro last updated on 07/Sep/16

I agree with you.

$${I}\:{agree}\:{with}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com