Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 75955 by benjo last updated on 21/Dec/19

help me

$${help}\:{me}\: \\ $$$$ \\ $$

Answered by benjo last updated on 21/Dec/19

Answered by mr W last updated on 21/Dec/19

Commented by mr W last updated on 21/Dec/19

cos θ=((7^2 +9^2 −8^2 )/(2×7×9))=((11)/(21))  r_1 =(7/(2×sin θ))=(7/(2×((8(√5))/(21))))=((147)/(16(√5)))  r_2 =(9/(2×sin θ))=(9/(2×((8(√5))/(21))))=((189)/(16(√5)))  ∠ACB=2((π/2)−θ)+θ=π−θ  AB^2 =r_1 ^2 +r_2 ^2 −2r_1 r_2  cos ∠ACB  =(((147)/(16(√5))))^2 +(((189)/(16(√5))))^2 +2×((147)/(16(√5)))×((189)/(16(√5)))×((11)/(21))  =((147^2 +189^2 +2×147×189×((11)/(21)))/(16^2 ×5))  =((21609)/(320))  ⇒AB=((147(√5))/(40))  (1/2)×AB×((CD)/2)=(1/2)×r_1 ×r_2 ×sin ∠ACB  ((147(√5))/(40))×((CD)/2)=((147)/(16(√5)))×((189)/(16(√5)))×((8(√5))/(21))  ⇒CD=(9/2)=4.5

$$\mathrm{cos}\:\theta=\frac{\mathrm{7}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }{\mathrm{2}×\mathrm{7}×\mathrm{9}}=\frac{\mathrm{11}}{\mathrm{21}} \\ $$$${r}_{\mathrm{1}} =\frac{\mathrm{7}}{\mathrm{2}×\mathrm{sin}\:\theta}=\frac{\mathrm{7}}{\mathrm{2}×\frac{\mathrm{8}\sqrt{\mathrm{5}}}{\mathrm{21}}}=\frac{\mathrm{147}}{\mathrm{16}\sqrt{\mathrm{5}}} \\ $$$${r}_{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{2}×\mathrm{sin}\:\theta}=\frac{\mathrm{9}}{\mathrm{2}×\frac{\mathrm{8}\sqrt{\mathrm{5}}}{\mathrm{21}}}=\frac{\mathrm{189}}{\mathrm{16}\sqrt{\mathrm{5}}} \\ $$$$\angle{ACB}=\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−\theta\right)+\theta=\pi−\theta \\ $$$${AB}^{\mathrm{2}} ={r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{r}_{\mathrm{1}} {r}_{\mathrm{2}} \:\mathrm{cos}\:\angle{ACB} \\ $$$$=\left(\frac{\mathrm{147}}{\mathrm{16}\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{189}}{\mathrm{16}\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} +\mathrm{2}×\frac{\mathrm{147}}{\mathrm{16}\sqrt{\mathrm{5}}}×\frac{\mathrm{189}}{\mathrm{16}\sqrt{\mathrm{5}}}×\frac{\mathrm{11}}{\mathrm{21}} \\ $$$$=\frac{\mathrm{147}^{\mathrm{2}} +\mathrm{189}^{\mathrm{2}} +\mathrm{2}×\mathrm{147}×\mathrm{189}×\frac{\mathrm{11}}{\mathrm{21}}}{\mathrm{16}^{\mathrm{2}} ×\mathrm{5}} \\ $$$$=\frac{\mathrm{21609}}{\mathrm{320}} \\ $$$$\Rightarrow{AB}=\frac{\mathrm{147}\sqrt{\mathrm{5}}}{\mathrm{40}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×{AB}×\frac{{CD}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}×{r}_{\mathrm{1}} ×{r}_{\mathrm{2}} ×\mathrm{sin}\:\angle{ACB} \\ $$$$\frac{\mathrm{147}\sqrt{\mathrm{5}}}{\mathrm{40}}×\frac{{CD}}{\mathrm{2}}=\frac{\mathrm{147}}{\mathrm{16}\sqrt{\mathrm{5}}}×\frac{\mathrm{189}}{\mathrm{16}\sqrt{\mathrm{5}}}×\frac{\mathrm{8}\sqrt{\mathrm{5}}}{\mathrm{21}} \\ $$$$\Rightarrow{CD}=\frac{\mathrm{9}}{\mathrm{2}}=\mathrm{4}.\mathrm{5} \\ $$

Commented by benjo last updated on 21/Dec/19

thanks sir.

$$\mathrm{thanks}\:\mathrm{sir}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com