Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 75040 by mathocean1 last updated on 06/Dec/19

Please can you help me to   to show that:  cos ((47Π)/(13))=sin ((23Π)/(26))=sin((3Π)/(26))

$$\mathrm{Please}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\: \\ $$$$\mathrm{to}\:\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{cos}\:\frac{\mathrm{47}\Pi}{\mathrm{13}}=\mathrm{sin}\:\frac{\mathrm{23}\Pi}{\mathrm{26}}=\mathrm{sin}\frac{\mathrm{3}\Pi}{\mathrm{26}} \\ $$

Answered by Kunal12588 last updated on 06/Dec/19

cos((47π)/(13))=cos(((52π−5π)/(13)))=cos(4π−((5π)/(13)))  =cos(((5π)/(13)))=sin((π/2)+((5π)/(13)))=sin((23π)/(26))  =sin((26π−3π)/(26))=sin(π−((3π)/(26)))=sin((3π)/(26))

$${cos}\frac{\mathrm{47}\pi}{\mathrm{13}}={cos}\left(\frac{\mathrm{52}\pi−\mathrm{5}\pi}{\mathrm{13}}\right)={cos}\left(\mathrm{4}\pi−\frac{\mathrm{5}\pi}{\mathrm{13}}\right) \\ $$$$={cos}\left(\frac{\mathrm{5}\pi}{\mathrm{13}}\right)={sin}\left(\frac{\pi}{\mathrm{2}}+\frac{\mathrm{5}\pi}{\mathrm{13}}\right)={sin}\frac{\mathrm{23}\pi}{\mathrm{26}} \\ $$$$={sin}\frac{\mathrm{26}\pi−\mathrm{3}\pi}{\mathrm{26}}={sin}\left(\pi−\frac{\mathrm{3}\pi}{\mathrm{26}}\right)={sin}\frac{\mathrm{3}\pi}{\mathrm{26}} \\ $$

Commented by mathocean1 last updated on 07/Dec/19

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com