Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 73090 by ajfour last updated on 06/Nov/19

Commented by ajfour last updated on 06/Nov/19

Find x(t),  x(0)=a , ω_0 =0,   α is constant.

$${Find}\:{x}\left({t}\right),\:\:{x}\left(\mathrm{0}\right)={a}\:,\:\omega_{\mathrm{0}} =\mathrm{0},\: \\ $$$$\alpha\:{is}\:{constant}. \\ $$

Answered by mr W last updated on 06/Nov/19

ω=αt  A=(dx^2 /dt^2 )  N=(√((mg)^2 +(mxα)^2 ))=m(√(g^2 +α^2 x^2 ))  mA=mxω^2 −μN  A=xω^2 −μ(√(g^2 +α^2 x^2 ))  ⇒(dx^2 /dt^2 )=α^2 t^2 x−μ(√(g^2 +α^2 x^2 ))  i don′t know how to solve even if there  is no friction, i.e. μ=0.

$$\omega=\alpha{t} \\ $$$${A}=\frac{{dx}^{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${N}=\sqrt{\left({mg}\right)^{\mathrm{2}} +\left({mx}\alpha\right)^{\mathrm{2}} }={m}\sqrt{{g}^{\mathrm{2}} +\alpha^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$${mA}={mx}\omega^{\mathrm{2}} −\mu{N} \\ $$$${A}={x}\omega^{\mathrm{2}} −\mu\sqrt{{g}^{\mathrm{2}} +\alpha^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{dx}^{\mathrm{2}} }{{dt}^{\mathrm{2}} }=\alpha^{\mathrm{2}} {t}^{\mathrm{2}} {x}−\mu\sqrt{{g}^{\mathrm{2}} +\alpha^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$${i}\:{don}'{t}\:{know}\:{how}\:{to}\:{solve}\:{even}\:{if}\:{there} \\ $$$${is}\:{no}\:{friction},\:{i}.{e}.\:\mu=\mathrm{0}. \\ $$

Commented by ajfour last updated on 06/Nov/19

alright sir, has to do with  coriolis acceleration, perhaps,  i′ll revise and update you too..

$${alright}\:{sir},\:{has}\:{to}\:{do}\:{with} \\ $$$${coriolis}\:{acceleration},\:{perhaps}, \\ $$$${i}'{ll}\:{revise}\:{and}\:{update}\:{you}\:{too}.. \\ $$

Answered by ajfour last updated on 12/Nov/19

Commented by mr W last updated on 12/Nov/19

thank you sir!  if the angular acceleration is zero,  we can solve even with friction.    but the solution for (d^2 r/dt^2 )=α^2 rt^2  needs  parabolic cylinder function which i  don′t understand.

$${thank}\:{you}\:{sir}! \\ $$$${if}\:{the}\:{angular}\:{acceleration}\:{is}\:{zero}, \\ $$$${we}\:{can}\:{solve}\:{even}\:{with}\:{friction}. \\ $$$$ \\ $$$${but}\:{the}\:{solution}\:{for}\:\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\alpha^{\mathrm{2}} {rt}^{\mathrm{2}} \:{needs} \\ $$$${parabolic}\:{cylinder}\:{function}\:{which}\:{i} \\ $$$${don}'{t}\:{understand}. \\ $$

Commented by ajfour last updated on 12/Nov/19

but here (i forgot)  (dω/dt)=α (constant)  (d^2 r/dt^2 )=α^2 rt^2   dunnow how to solve..

$${but}\:{here}\:\left({i}\:{forgot}\right)\:\:\frac{{d}\omega}{{dt}}=\alpha\:\left({constant}\right) \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\alpha^{\mathrm{2}} {rt}^{\mathrm{2}} \\ $$$${dunnow}\:{how}\:{to}\:{solve}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com