Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 73032 by mathmax by abdo last updated on 05/Nov/19

find x from n  / ∃n∈N^n     and 1+x+x^2  +x^3  +x^4 =n^2

$${find}\:{x}\:{from}\:{n}\:\:/\:\exists{n}\in{N}^{{n}} \:\:\:\:{and}\:\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} \:+{x}^{\mathrm{4}} ={n}^{\mathrm{2}} \\ $$

Answered by mind is power last updated on 05/Nov/19

⇔4+4x+4x^2 +4x^3 +4x^4 =(2n)^2   (2x^2 +x+1)^2 =4x^4 +5x^2 +4x^3 +2x+1≥4+4x+4x^2 +4x^3 +4x^4   ⇔x^2 −2x−3≥0  (x+1)(x−3)≥0⇒x≥3  x=0 is solution   x=1 not  x=2  not  lets assum x≥3  ⇒(2x^2 +x+1)^2 ≥4+4x+4x^2 +4x^3 +4x^4   (2x^2 +x)^2 =4x^4 +4x^3 +x^2 ≤4x^3 +4x^2 +4x^4 +4x+1  ⇒(2n)^2 =(2x+x+1)^2 =4x^4 +4x^3 +4x^2 +4x+4  ⇒x=3,  2n=(6+4)⇒n=5  (x,n)∈{(0,1),(3,5)}

$$\Leftrightarrow\mathrm{4}+\mathrm{4x}+\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{4}} =\left(\mathrm{2n}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4x}^{\mathrm{4}} +\mathrm{5x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{2x}+\mathrm{1}\geqslant\mathrm{4}+\mathrm{4x}+\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{4}} \\ $$$$\Leftrightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{3}\geqslant\mathrm{0} \\ $$$$\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}−\mathrm{3}\right)\geqslant\mathrm{0}\Rightarrow\mathrm{x}\geqslant\mathrm{3} \\ $$$$\mathrm{x}=\mathrm{0}\:\mathrm{is}\:\mathrm{solution}\: \\ $$$$\mathrm{x}=\mathrm{1}\:\mathrm{not} \\ $$$$\mathrm{x}=\mathrm{2}\:\:\mathrm{not} \\ $$$$\mathrm{lets}\:\mathrm{assum}\:\mathrm{x}\geqslant\mathrm{3} \\ $$$$\Rightarrow\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{4}+\mathrm{4x}+\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{4}} \\ $$$$\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{x}\right)^{\mathrm{2}} =\mathrm{4x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} \leqslant\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{4}} +\mathrm{4x}+\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{2n}\right)^{\mathrm{2}} =\left(\mathrm{2x}+\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{4} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{3}, \\ $$$$\mathrm{2n}=\left(\mathrm{6}+\mathrm{4}\right)\Rightarrow\mathrm{n}=\mathrm{5} \\ $$$$\left(\mathrm{x},\mathrm{n}\right)\in\left\{\left(\mathrm{0},\mathrm{1}\right),\left(\mathrm{3},\mathrm{5}\right)\right\} \\ $$$$ \\ $$$$ \\ $$

Commented by mind is power last updated on 06/Nov/19

y′re welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 05/Nov/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com