Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 71918 by lalitchand last updated on 22/Oct/19

If Cosθ=((x cosβ − y)/(x − y cosβ))  then prove that, tan(θ/2) =(√(((x−y)/(x+y)) )) tan(β/2)

$$\mathrm{If}\:\mathrm{Cos}\theta=\frac{\mathrm{x}\:\mathrm{cos}\beta\:−\:\mathrm{y}}{\mathrm{x}\:−\:\mathrm{y}\:\mathrm{cos}\beta}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\:\mathrm{tan}\frac{\theta}{\mathrm{2}}\:=\sqrt{\frac{\mathrm{x}−\mathrm{y}}{\mathrm{x}+\mathrm{y}}\:}\:\mathrm{tan}\frac{\beta}{\mathrm{2}} \\ $$

Commented by Prithwish sen last updated on 22/Oct/19

Using componendo dividendo  ((1−cosθ)/(1+cosθ)) = (((1−cosβ)(x+y))/((1+cosβ)(x−y)))  tan(𝛉/2) = (√((x+y)/(x−y))) tan(𝛃/2)  please check the question.

$$\mathrm{Using}\:\mathrm{componendo}\:\mathrm{dividendo} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\theta}{\mathrm{1}+\mathrm{cos}\theta}\:=\:\frac{\left(\mathrm{1}−\mathrm{cos}\beta\right)\left(\mathrm{x}+\mathrm{y}\right)}{\left(\mathrm{1}+\mathrm{cos}\beta\right)\left(\mathrm{x}−\mathrm{y}\right)} \\ $$$$\boldsymbol{\mathrm{tan}}\frac{\boldsymbol{\theta}}{\mathrm{2}}\:=\:\sqrt{\frac{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}}}\:\boldsymbol{\mathrm{tan}}\frac{\boldsymbol{\beta}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{question}}. \\ $$

Commented by lalitchand last updated on 22/Oct/19

Is there mistake sir??

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{mistake}\:\mathrm{sir}?? \\ $$

Answered by mind is power last updated on 22/Oct/19

cos(β)=2cos^2 ((β/2))−1=((1−tg^2 ((β/2)))/(1+tg^2 ((β/2))))  assum x≥y x+y#0  β,θ∈[0,π]  ((xcos(β)−y)/(x−ycos(β)))=((x(1−tg^2 (β))−y(1+tg^2 ((β/2)))/(x(1+tg^2 (β))−y(1−tg^2 (β))))=(((x−y)−(x+y)tg^2 ((β/2)))/((x−y)+(x+y)tg^2 ((β/2))))  cos(θ)=((1−tg^2 ((θ/2)))/(1+tg^2 ((θ/2))))=(((x−y)−(x+y)tg^2 ((β/2)))/((x−y)+(x+y)tg^2 ((β/2))))=((1−((x+y)/(x−y))tg^2 ((β/2)))/(1+((x+y)/(x−y))tg^2 ((β/2))))  let f(x)=((1−x)/(1+x))     x∈R−{−1}⇒f′(x)=((−2)/((1+x)^2 ))<0 decreasing...I  ⇒f(x)=f(y),x=y  cos(θ)=((1−tg^2 ((θ/2)))/(1+tg^2 ((θ/2))))=(((x−y)−(x+y)tg^2 ((β/2)))/((x−y)+(x+y)tg^2 ((β/2))))=((1−((x+y)/(x−y))tg^2 ((β/2)))/(1+((x+y)/(x−y))tg^2 ((β/2))))  ⇔f(tg^2 ((θ/2)))=f(((x+y)/(x−y))tg^2 ((β/2)))⇒by  I  tg^2 ((θ/2))=((x+y)/(x−y))tg^2 ((β/2))⇒tg((θ/2))=(√((x+y)/(x−y)))tg((β/2))

$$\mathrm{cos}\left(\beta\right)=\mathrm{2cos}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)−\mathrm{1}=\frac{\mathrm{1}−\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)} \\ $$$$\mathrm{assum}\:\mathrm{x}\geqslant\mathrm{y}\:\mathrm{x}+\mathrm{y}#\mathrm{0}\:\:\beta,\theta\in\left[\mathrm{0},\pi\right] \\ $$$$\frac{\mathrm{xcos}\left(\beta\right)−\mathrm{y}}{\mathrm{x}−\mathrm{ycos}\left(\beta\right)}=\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{tg}^{\mathrm{2}} \left(\beta\right)\right)−\mathrm{y}\left(\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)\right.}{\mathrm{x}\left(\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\beta\right)\right)−\mathrm{y}\left(\mathrm{1}−\mathrm{tg}^{\mathrm{2}} \left(\beta\right)\right)}=\frac{\left(\mathrm{x}−\mathrm{y}\right)−\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}{\left(\mathrm{x}−\mathrm{y}\right)+\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)} \\ $$$$\mathrm{cos}\left(\theta\right)=\frac{\mathrm{1}−\mathrm{tg}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}=\frac{\left(\mathrm{x}−\mathrm{y}\right)−\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}{\left(\mathrm{x}−\mathrm{y}\right)+\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}=\frac{\mathrm{1}−\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}{\mathrm{1}+\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}\:\:\:\:\:\mathrm{x}\in\mathbb{R}−\left\{−\mathrm{1}\right\}\Rightarrow\mathrm{f}'\left(\mathrm{x}\right)=\frac{−\mathrm{2}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }<\mathrm{0}\:\mathrm{decreasing}...\mathrm{I} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{y}\right),\mathrm{x}=\mathrm{y} \\ $$$$\mathrm{cos}\left(\theta\right)=\frac{\mathrm{1}−\mathrm{tg}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}=\frac{\left(\mathrm{x}−\mathrm{y}\right)−\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}{\left(\mathrm{x}−\mathrm{y}\right)+\left(\mathrm{x}+\mathrm{y}\right)\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}=\frac{\mathrm{1}−\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)}{\mathrm{1}+\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)} \\ $$$$\Leftrightarrow\mathrm{f}\left(\mathrm{tg}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)\right)=\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)\right)\Rightarrow\mathrm{by}\:\:\mathrm{I} \\ $$$$\mathrm{tg}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)=\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}\mathrm{tg}^{\mathrm{2}} \left(\frac{\beta}{\mathrm{2}}\right)\Rightarrow\mathrm{tg}\left(\frac{\theta}{\mathrm{2}}\right)=\sqrt{\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}−\mathrm{y}}}\mathrm{tg}\left(\frac{\beta}{\mathrm{2}}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by lalitchand last updated on 22/Oct/19

I dont understand sir? if u dont mind tell me easy way

$$\mathrm{I}\:\mathrm{dont}\:\mathrm{understand}\:\mathrm{sir}?\:\mathrm{if}\:\mathrm{u}\:\mathrm{dont}\:\mathrm{mind}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{easy}\:\mathrm{way} \\ $$

Commented by mind is power last updated on 23/Oct/19

i will try later other solution

$$\mathrm{i}\:\mathrm{will}\:\mathrm{try}\:\mathrm{later}\:\mathrm{other}\:\mathrm{solution}\: \\ $$

Answered by Tanmay chaudhury last updated on 22/Oct/19

xcosθ−ycosβcosθ=xcosβ−y  x(cosθ−cosβ)=y(cosβcosθ−1)  (x/y)=((cosβcosθ−1)/(cosθ−cosβ))  ((x−y)/(x+y))=((cosβcosθ−1−cosθ+cosβ)/(cosβcosθ−1+cosθ−cosβ))  =((cosθ(cosβ−1)+1(cosβ−1))/(cosθ(1+cosβ)−1(1+cosβ)))  =(((1+cosθ)(1−cosβ)×−1)/((1+cosβ)(1−cosθ)×−1))  =((2cos^2 (θ/2)×2sin^2 (β/2))/(2cos^2 (β/2)×2sin^2 (θ/2)))  =((tan^2 (β/2))/(tan^2 (θ/2)))  tan(β/2)=(√((x−y)/(x+y))) ×tan(θ/2)  pls check...

$${xcos}\theta−{ycos}\beta{cos}\theta={xcos}\beta−{y} \\ $$$${x}\left({cos}\theta−{cos}\beta\right)={y}\left({cos}\beta{cos}\theta−\mathrm{1}\right) \\ $$$$\frac{{x}}{{y}}=\frac{{cos}\beta{cos}\theta−\mathrm{1}}{{cos}\theta−{cos}\beta} \\ $$$$\frac{{x}−{y}}{{x}+{y}}=\frac{{cos}\beta{cos}\theta−\mathrm{1}−{cos}\theta+{cos}\beta}{{cos}\beta{cos}\theta−\mathrm{1}+{cos}\theta−{cos}\beta} \\ $$$$=\frac{{cos}\theta\left({cos}\beta−\mathrm{1}\right)+\mathrm{1}\left({cos}\beta−\mathrm{1}\right)}{{cos}\theta\left(\mathrm{1}+{cos}\beta\right)−\mathrm{1}\left(\mathrm{1}+{cos}\beta\right)} \\ $$$$=\frac{\left(\mathrm{1}+{cos}\theta\right)\left(\mathrm{1}−{cos}\beta\right)×−\mathrm{1}}{\left(\mathrm{1}+{cos}\beta\right)\left(\mathrm{1}−{cos}\theta\right)×−\mathrm{1}} \\ $$$$=\frac{\mathrm{2}{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}×\mathrm{2}{sin}^{\mathrm{2}} \frac{\beta}{\mathrm{2}}}{\mathrm{2}{cos}^{\mathrm{2}} \frac{\beta}{\mathrm{2}}×\mathrm{2}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$=\frac{{tan}^{\mathrm{2}} \frac{\beta}{\mathrm{2}}}{{tan}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$${tan}\frac{\beta}{\mathrm{2}}=\sqrt{\frac{{x}−{y}}{{x}+{y}}}\:×{tan}\frac{\theta}{\mathrm{2}} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}}... \\ $$

Commented by mind is power last updated on 23/Oct/19

nice sir  creative solution

$$\mathrm{nice}\:\mathrm{sir}\:\:\mathrm{creative}\:\mathrm{solution} \\ $$

Commented by Tanmay chaudhury last updated on 23/Oct/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com