Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 71564 by 20190927 last updated on 17/Oct/19

(z−i)^4 =−7+24i

$$\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{4}} =−\mathrm{7}+\mathrm{24i} \\ $$

Commented by mathmax by abdo last updated on 18/Oct/19

we have ∣−7+24i∣=(√(7^2  +24^2 ))=(√(49+576))=(√(625))=25 ⇒  −7+24i =25 e^(−iarctan(((24)/7)))   and (z−i)^4  =25 e^(−iarctan(((24)/7)))  let   z−i=re^(iθ)  ⇒r^4 e^(i4θ) =25 e^(−iarctan(((24)/7)))  ⇒r=^4 (√(25))=(5^2 )^(1/4) =(√5)  4θ =−arctan(((24)/7))+2kπ ⇒θ_k =−((arctan(((24)/7)))/4) +((kπ)/2)  and k∈[[0,3]] so the roots ofthis equations are  Z_k =(√5)e^(i(((kπ)/2)−((arctan(((24)/7)))/4)))  +i   with 0≤k≤3

$${we}\:{have}\:\mid−\mathrm{7}+\mathrm{24}{i}\mid=\sqrt{\mathrm{7}^{\mathrm{2}} \:+\mathrm{24}^{\mathrm{2}} }=\sqrt{\mathrm{49}+\mathrm{576}}=\sqrt{\mathrm{625}}=\mathrm{25}\:\Rightarrow \\ $$$$−\mathrm{7}+\mathrm{24}{i}\:=\mathrm{25}\:{e}^{−{iarctan}\left(\frac{\mathrm{24}}{\mathrm{7}}\right)} \:\:{and}\:\left({z}−{i}\right)^{\mathrm{4}} \:=\mathrm{25}\:{e}^{−{iarctan}\left(\frac{\mathrm{24}}{\mathrm{7}}\right)} \:{let}\: \\ $$$${z}−{i}={re}^{{i}\theta} \:\Rightarrow{r}^{\mathrm{4}} {e}^{{i}\mathrm{4}\theta} =\mathrm{25}\:{e}^{−{iarctan}\left(\frac{\mathrm{24}}{\mathrm{7}}\right)} \:\Rightarrow{r}=^{\mathrm{4}} \sqrt{\mathrm{25}}=\left(\mathrm{5}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} =\sqrt{\mathrm{5}} \\ $$$$\mathrm{4}\theta\:=−{arctan}\left(\frac{\mathrm{24}}{\mathrm{7}}\right)+\mathrm{2}{k}\pi\:\Rightarrow\theta_{{k}} =−\frac{{arctan}\left(\frac{\mathrm{24}}{\mathrm{7}}\right)}{\mathrm{4}}\:+\frac{{k}\pi}{\mathrm{2}} \\ $$$${and}\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right]\:{so}\:{the}\:{roots}\:{ofthis}\:{equations}\:{are} \\ $$$${Z}_{{k}} =\sqrt{\mathrm{5}}{e}^{{i}\left(\frac{{k}\pi}{\mathrm{2}}−\frac{{arctan}\left(\frac{\mathrm{24}}{\mathrm{7}}\right)}{\mathrm{4}}\right)} \:+{i}\:\:\:{with}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{3} \\ $$$$ \\ $$$$ \\ $$

Commented by 20190927 last updated on 21/Oct/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by MJS last updated on 17/Oct/19

x^4 =y ⇒  x_(1, 2) =±(y)^(1/4)   x_(3, 4) =±i(y)^(1/4)     ((−7+24i))^(1/4) =2+i  ⇒ z−i=±(2+i) ∨ z−i=±i(2+i)  ⇒ z=−2∨z=2+2i∨−1+3i∨1−i

$${x}^{\mathrm{4}} ={y}\:\Rightarrow \\ $$$${x}_{\mathrm{1},\:\mathrm{2}} =\pm\sqrt[{\mathrm{4}}]{{y}} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} =\pm\mathrm{i}\sqrt[{\mathrm{4}}]{{y}} \\ $$$$ \\ $$$$\sqrt[{\mathrm{4}}]{−\mathrm{7}+\mathrm{24i}}=\mathrm{2}+\mathrm{i} \\ $$$$\Rightarrow\:{z}−\mathrm{i}=\pm\left(\mathrm{2}+\mathrm{i}\right)\:\vee\:{z}−\mathrm{i}=\pm\mathrm{i}\left(\mathrm{2}+\mathrm{i}\right) \\ $$$$\Rightarrow\:{z}=−\mathrm{2}\vee{z}=\mathrm{2}+\mathrm{2i}\vee−\mathrm{1}+\mathrm{3i}\vee\mathrm{1}−\mathrm{i} \\ $$

Commented by 20190927 last updated on 21/Oct/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com