Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 70757 by MJS last updated on 08/Oct/19

.

$$. \\ $$

Commented by TawaTawa last updated on 07/Oct/19

Sir, help me with the question number of a question you solved  sometimes.        If        a + b + c  =  α                  a^2  + b^2  + c^2   =  β                  a^3  + b^3  + c^3   =  γ  Find         a^5  + b^5  + c^5 ,       something like this

$$\mathrm{Sir},\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{the}\:\mathrm{question}\:\mathrm{number}\:\mathrm{of}\:\mathrm{a}\:\mathrm{question}\:\mathrm{you}\:\mathrm{solved} \\ $$$$\mathrm{sometimes}. \\ $$$$ \\ $$$$\:\:\:\:\mathrm{If}\:\:\:\:\:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \:\:=\:\:\gamma \\ $$$$\mathrm{Find}\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}} ,\:\:\:\:\:\:\:\mathrm{something}\:\mathrm{like}\:\mathrm{this} \\ $$$$ \\ $$

Commented by MJS last updated on 07/Oct/19

I can′t find it now.  the idea is: put b=x−y and c=x+y which  leads to  (1)  a+2x=α  (2)  a^2 +2x^2 +2y^2 =β  (3)  a^3 +2x^3 +6xy^2 =γ  ===========  (1) ⇒ a=α−2x  ⇒  (2)  6x^2 −4αx+2y^2 +α^2 =β  (3)  −6x^3 +12αx^2 +6(y^2 −α^2 )x+α^3 =γ  ====================  (2) ⇒ y^2 =−3x^2 +2αx+((β−α^2 )/2)  ⇒  (3)  −24x^3 +24αx^2 −3(3α^2 −β)x+α^3 −γ=0  ⇒ x^3 −αx^2 +((3α^2 −β)/8)x−((α^3 −γ)/(24))=0  but  a^4 +b^4 +c^4 =  =−32α(x^3 −αx^2 +((3α^2 −β)/8)x−((3α^4 −2α^2 β+β^2 )/(64α)))  and  a^5 +b^5 +c^5 =  =−20(α^2 +β)(x^3 +αx^2 +((3α^2 −β)/8)x−(α^5 /(20(α^2 +β))))  so we don′t have to solve, just compare the  constant factors

$$\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}\:\mathrm{now}. \\ $$$$\mathrm{the}\:\mathrm{idea}\:\mathrm{is}:\:\mathrm{put}\:{b}={x}−{y}\:\mathrm{and}\:{c}={x}+{y}\:\mathrm{which} \\ $$$$\mathrm{leads}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:\:{a}+\mathrm{2}{x}=\alpha \\ $$$$\left(\mathrm{2}\right)\:\:{a}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} =\beta \\ $$$$\left(\mathrm{3}\right)\:\:{a}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{6}{xy}^{\mathrm{2}} =\gamma \\ $$$$=========== \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow\:{a}=\alpha−\mathrm{2}{x} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{6}{x}^{\mathrm{2}} −\mathrm{4}\alpha{x}+\mathrm{2}{y}^{\mathrm{2}} +\alpha^{\mathrm{2}} =\beta \\ $$$$\left(\mathrm{3}\right)\:\:−\mathrm{6}{x}^{\mathrm{3}} +\mathrm{12}\alpha{x}^{\mathrm{2}} +\mathrm{6}\left({y}^{\mathrm{2}} −\alpha^{\mathrm{2}} \right){x}+\alpha^{\mathrm{3}} =\gamma \\ $$$$==================== \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:{y}^{\mathrm{2}} =−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}\alpha{x}+\frac{\beta−\alpha^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{3}\right)\:\:−\mathrm{24}{x}^{\mathrm{3}} +\mathrm{24}\alpha{x}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{3}\alpha^{\mathrm{2}} −\beta\right){x}+\alpha^{\mathrm{3}} −\gamma=\mathrm{0} \\ $$$$\Rightarrow\:{x}^{\mathrm{3}} −\alpha{x}^{\mathrm{2}} +\frac{\mathrm{3}\alpha^{\mathrm{2}} −\beta}{\mathrm{8}}{x}−\frac{\alpha^{\mathrm{3}} −\gamma}{\mathrm{24}}=\mathrm{0} \\ $$$$\mathrm{but} \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} = \\ $$$$=−\mathrm{32}\alpha\left({x}^{\mathrm{3}} −\alpha{x}^{\mathrm{2}} +\frac{\mathrm{3}\alpha^{\mathrm{2}} −\beta}{\mathrm{8}}{x}−\frac{\mathrm{3}\alpha^{\mathrm{4}} −\mathrm{2}\alpha^{\mathrm{2}} \beta+\beta^{\mathrm{2}} }{\mathrm{64}\alpha}\right) \\ $$$$\mathrm{and} \\ $$$${a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} = \\ $$$$=−\mathrm{20}\left(\alpha^{\mathrm{2}} +\beta\right)\left({x}^{\mathrm{3}} +\alpha{x}^{\mathrm{2}} +\frac{\mathrm{3}\alpha^{\mathrm{2}} −\beta}{\mathrm{8}}{x}−\frac{\alpha^{\mathrm{5}} }{\mathrm{20}\left(\alpha^{\mathrm{2}} +\beta\right)}\right) \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve},\:\mathrm{just}\:\mathrm{compare}\:\mathrm{the} \\ $$$$\mathrm{constant}\:\mathrm{factors} \\ $$

Commented by TawaTawa last updated on 07/Oct/19

God bless you sir,  i appreciate

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\:\mathrm{i}\:\mathrm{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com