Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 70446 by oyemi kemewari last updated on 04/Oct/19

Commented by oyemi kemewari last updated on 04/Oct/19

please help me solve this question

Commented by mathmax by abdo last updated on 04/Oct/19

its only a try let f(x)=∫_0 ^x (√(x−t))sint dt  changement (√(x−t))=u give  x−t=u^2  ⇒t=x−u^2  ⇒f(x)=−∫_0 ^(√x) usin(x−u^2 )(−2u)du  =2 ∫_0 ^(√x) u^2 sin(x−u^2 )du  =∫_0 ^(√x) u(2usin(x−u^2 ))du  by parts  f=u and g^′ =2usin(x−u^2 ) ⇒  f(x)=[u cos(x−u^2 )]_0 ^(√x)    −∫_0 ^(√x) cos(x−u^2 )du  =(√x)cos((√x)−x) −∫_0 ^(√x) (cosx cos(u^2 )+sinx sin(u^2 )du  =(√x)cos((√x)−x)−cosx ∫_0 ^(√x)  cos(u^2 )du −sinx∫_0 ^(√x)  sin(u^2 )du

$${its}\:{only}\:{a}\:{try}\:{let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \sqrt{{x}−{t}}{sint}\:{dt}\:\:{changement}\:\sqrt{{x}−{t}}={u}\:{give} \\ $$$${x}−{t}={u}^{\mathrm{2}} \:\Rightarrow{t}={x}−{u}^{\mathrm{2}} \:\Rightarrow{f}\left({x}\right)=−\int_{\mathrm{0}} ^{\sqrt{{x}}} {usin}\left({x}−{u}^{\mathrm{2}} \right)\left(−\mathrm{2}{u}\right){du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\sqrt{{x}}} {u}^{\mathrm{2}} {sin}\left({x}−{u}^{\mathrm{2}} \right){du}\:\:=\int_{\mathrm{0}} ^{\sqrt{{x}}} {u}\left(\mathrm{2}{usin}\left({x}−{u}^{\mathrm{2}} \right)\right){du} \\ $$$${by}\:{parts}\:\:{f}={u}\:{and}\:{g}^{'} =\mathrm{2}{usin}\left({x}−{u}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${f}\left({x}\right)=\left[{u}\:{cos}\left({x}−{u}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\sqrt{{x}}} \:\:\:−\int_{\mathrm{0}} ^{\sqrt{{x}}} {cos}\left({x}−{u}^{\mathrm{2}} \right){du} \\ $$$$=\sqrt{{x}}{cos}\left(\sqrt{{x}}−{x}\right)\:−\int_{\mathrm{0}} ^{\sqrt{{x}}} \left({cosx}\:{cos}\left({u}^{\mathrm{2}} \right)+{sinx}\:{sin}\left({u}^{\mathrm{2}} \right){du}\right. \\ $$$$=\sqrt{{x}}{cos}\left(\sqrt{{x}}−{x}\right)−{cosx}\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:{cos}\left({u}^{\mathrm{2}} \right){du}\:−{sinx}\int_{\mathrm{0}} ^{\sqrt{{x}}} \:{sin}\left({u}^{\mathrm{2}} \right){du} \\ $$

Commented by MJS last updated on 04/Oct/19

this looks as if it′s coming to a Fresnel integral,  but I cannot help...

$$\mathrm{this}\:\mathrm{looks}\:\mathrm{as}\:\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{coming}\:\mathrm{to}\:\mathrm{a}\:\mathrm{Fresnel}\:\mathrm{integral}, \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{cannot}\:\mathrm{help}... \\ $$

Commented by mathmax by abdo last updated on 04/Oct/19

you are right sir.

$${you}\:{are}\:{right}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com