Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 114236 by Aina Samuel Temidayo last updated on 18/Sep/20

70% of the employees in a  multinational corporation have VCD  players, 75% have microwave ovens,  80% have ACs and 85% have washing  machines. At least what percentage of  employees has all four gadgets?

$$\mathrm{70\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{multinational}\:\mathrm{corporation}\:\mathrm{have}\:\mathrm{VCD} \\ $$$$\mathrm{players},\:\mathrm{75\%}\:\mathrm{have}\:\mathrm{microwave}\:\mathrm{ovens}, \\ $$$$\mathrm{80\%}\:\mathrm{have}\:\mathrm{ACs}\:\mathrm{and}\:\mathrm{85\%}\:\mathrm{have}\:\mathrm{washing} \\ $$$$\mathrm{machines}.\:\mathrm{At}\:\mathrm{least}\:\mathrm{what}\:\mathrm{percentage}\:\mathrm{of} \\ $$$$\mathrm{employees}\:\mathrm{has}\:\mathrm{all}\:\mathrm{four}\:\mathrm{gadgets}? \\ $$

Answered by Dat_Das last updated on 18/Sep/20

10%

$$\mathrm{10\%} \\ $$

Answered by 1549442205PVT last updated on 18/Sep/20

Denote  VCD players unit byV  M−  the microwave ovens  A− the  ACs  W− the washing machines  m−number of the employees have  only V  n−number of the employees have  only M  p−number of the employees have  only A  w−number of the employees have  only W  a−number of the employees have  only two gadgets VM  b−number of the employees have  only two gadgets VA  c−number of the employees have   only two gadgets VW  d−number of the employees have only two gadgets  MA  e−number of the employees have only two gadgets  MW  f−number of the employees have only two gadgets  AW  x−number of the employees have only  three gadgets MAV  y−number of the employees have only  three gadgets VAW  z−number of the employees have only  three gadgets VMW  t−number of the employees have only  three gadgets VMA  T−number of the employees have   all four gadgets.  Then from the hypothesis we have  m+n+p+q+a+b+c+d+e+f  +x+y+z+t+T=100(1)  m+a+b+c+z+y+t+T=70(2)  n+a+d+e+x+z+t+T=75(3)  p+b+d+f+x+y+t+T=80(4)  q+c+e+f+x+y+z+T=85(5)  Adding up four above equalities we get  m+n+p+q+2(a+b+c+d+e+f)  +3(x+y+z+t)+4T=310(6)  Multiplying two sides of (1) by 3 then  substracting from (6)we get  −2(m+n+p+q)−(a+b+c+d+e+f)+T=10  ⇒T=10+2(m+n+p+q)+(a+b+c+d+e+f)  ⇒T≥10(%)  The equality ocurrs if and only if  m=n=p=q=a=b=c=d=e=f=0  which means nobody has only one  gadgets and also nobody has only  two gadgets all have at least three  gadgets up  Answer :at least 10% of the employees  have all four gadgets

$$\mathrm{Denote}\:\:\mathrm{VCD}\:\mathrm{players}\:\mathrm{unit}\:\mathrm{byV} \\ $$$$\mathrm{M}−\:\:\mathrm{the}\:\mathrm{microwave}\:\mathrm{ovens} \\ $$$$\mathrm{A}−\:\mathrm{the}\:\:\mathrm{ACs} \\ $$$$\mathrm{W}−\:\mathrm{the}\:\mathrm{washing}\:\mathrm{machines} \\ $$$$\mathrm{m}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have} \\ $$$$\mathrm{only}\:\mathrm{V} \\ $$$$\mathrm{n}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have} \\ $$$$\mathrm{only}\:\mathrm{M} \\ $$$$\mathrm{p}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have} \\ $$$$\mathrm{only}\:\mathrm{A} \\ $$$$\mathrm{w}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have} \\ $$$$\mathrm{only}\:\mathrm{W} \\ $$$$\mathrm{a}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have} \\ $$$$\mathrm{only}\:\mathrm{two}\:\mathrm{gadgets}\:\mathrm{VM} \\ $$$$\mathrm{b}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have} \\ $$$$\mathrm{only}\:\mathrm{two}\:\mathrm{gadgets}\:\mathrm{VA} \\ $$$$\mathrm{c}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\: \\ $$$$\mathrm{only}\:\mathrm{two}\:\mathrm{gadgets}\:\mathrm{VW} \\ $$$$\mathrm{d}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only}\:\mathrm{two}\:\mathrm{gadgets} \\ $$$$\mathrm{MA} \\ $$$$\mathrm{e}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only}\:\mathrm{two}\:\mathrm{gadgets} \\ $$$$\mathrm{MW} \\ $$$$\mathrm{f}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only}\:\mathrm{two}\:\mathrm{gadgets} \\ $$$$\mathrm{AW} \\ $$$$\mathrm{x}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only} \\ $$$$\mathrm{three}\:\mathrm{gadgets}\:\mathrm{MAV} \\ $$$$\mathrm{y}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only} \\ $$$$\mathrm{three}\:\mathrm{gadgets}\:\mathrm{VAW} \\ $$$$\mathrm{z}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only} \\ $$$$\mathrm{three}\:\mathrm{gadgets}\:\mathrm{VMW} \\ $$$$\mathrm{t}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\:\mathrm{only} \\ $$$$\mathrm{three}\:\mathrm{gadgets}\:\mathrm{VMA} \\ $$$$\mathrm{T}−\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{have}\: \\ $$$$\mathrm{all}\:\mathrm{four}\:\mathrm{gadgets}. \\ $$$$\mathrm{Then}\:\mathrm{from}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{m}+\mathrm{n}+\mathrm{p}+\mathrm{q}+\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f} \\ $$$$+\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{t}+\mathrm{T}=\mathrm{100}\left(\mathrm{1}\right) \\ $$$$\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{z}+\mathrm{y}+\mathrm{t}+\mathrm{T}=\mathrm{70}\left(\mathrm{2}\right) \\ $$$$\mathrm{n}+\mathrm{a}+\mathrm{d}+\mathrm{e}+\mathrm{x}+\mathrm{z}+\mathrm{t}+\mathrm{T}=\mathrm{75}\left(\mathrm{3}\right) \\ $$$$\mathrm{p}+\mathrm{b}+\mathrm{d}+\mathrm{f}+\mathrm{x}+\mathrm{y}+\mathrm{t}+\mathrm{T}=\mathrm{80}\left(\mathrm{4}\right) \\ $$$$\mathrm{q}+\mathrm{c}+\mathrm{e}+\mathrm{f}+\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{T}=\mathrm{85}\left(\mathrm{5}\right) \\ $$$$\mathrm{Adding}\:\mathrm{up}\:\mathrm{four}\:\mathrm{above}\:\mathrm{equalities}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{m}+\mathrm{n}+\mathrm{p}+\mathrm{q}+\mathrm{2}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}\right) \\ $$$$+\mathrm{3}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{t}\right)+\mathrm{4T}=\mathrm{310}\left(\mathrm{6}\right) \\ $$$$\mathrm{Multiplying}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{of}\:\left(\mathrm{1}\right)\:\mathrm{by}\:\mathrm{3}\:\mathrm{then} \\ $$$$\mathrm{substracting}\:\mathrm{from}\:\left(\mathrm{6}\right)\mathrm{we}\:\mathrm{get} \\ $$$$−\mathrm{2}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}+\mathrm{q}\right)−\left(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}\right)+\mathrm{T}=\mathrm{10} \\ $$$$\Rightarrow\mathrm{T}=\mathrm{10}+\mathrm{2}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}+\mathrm{q}\right)+\left(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}\right) \\ $$$$\Rightarrow\mathrm{T}\geqslant\mathrm{10}\left(\%\right) \\ $$$$\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\mathrm{m}=\mathrm{n}=\mathrm{p}=\mathrm{q}=\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=\mathrm{e}=\mathrm{f}=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{means}\:\mathrm{nobody}\:\mathrm{has}\:\mathrm{only}\:\mathrm{one} \\ $$$$\mathrm{gadgets}\:\mathrm{and}\:\mathrm{also}\:\mathrm{nobody}\:\mathrm{has}\:\mathrm{only} \\ $$$$\mathrm{two}\:\mathrm{gadgets}\:\mathrm{all}\:\mathrm{have}\:\mathrm{at}\:\mathrm{least}\:\mathrm{three} \\ $$$$\mathrm{gadgets}\:\mathrm{up} \\ $$$$\mathrm{Answer}\::\mathrm{at}\:\mathrm{least}\:\mathrm{10\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees} \\ $$$$\mathrm{have}\:\mathrm{all}\:\mathrm{four}\:\mathrm{gadgets} \\ $$

Commented by Aina Samuel Temidayo last updated on 19/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com