Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 69871 by Shamim last updated on 28/Sep/19

Here, m^2 −n^(2  ) = 4(√(mn ))and tanθ+sinθ= m  then prove that, tanθ−sinθ= n.

$$\mathrm{Here},\:\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}\:\:} =\:\mathrm{4}\sqrt{\mathrm{mn}\:}\mathrm{and}\:\mathrm{tan}\theta+\mathrm{sin}\theta=\:\mathrm{m} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\:\mathrm{tan}\theta−\mathrm{sin}\theta=\:\mathrm{n}. \\ $$

Answered by MJS last updated on 29/Sep/19

first how to solve  m^2 −n^2 =4(√(mn))  for n  squaring is a bad idea, it leads to  n^4 −2m^2 n^2 −16mn+m^4 =0  and it′s hard to solve  instead put m=p+q, n=p−q  4pq=4(√(p^2 −q^2 ))  p^2 q^2 =p^2 −q^2   ⇒ q=±(p/(√(p^2 +1)))  ⇒ m=p±(p/(√(p^2 +1))), n=p∓(p/(√(p^2 +1)))  but m=tan θ +sin θ  with p=tan θ we get (p/(√(p^2 +1)))=±sin θ  ⇒ n=tan θ −sin θ

$$\mathrm{first}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$${m}^{\mathrm{2}} −{n}^{\mathrm{2}} =\mathrm{4}\sqrt{{mn}} \\ $$$$\mathrm{for}\:{n} \\ $$$$\mathrm{squaring}\:\mathrm{is}\:\mathrm{a}\:\mathrm{bad}\:\mathrm{idea},\:\mathrm{it}\:\mathrm{leads}\:\mathrm{to} \\ $$$${n}^{\mathrm{4}} −\mathrm{2}{m}^{\mathrm{2}} {n}^{\mathrm{2}} −\mathrm{16}{mn}+{m}^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{hard}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{instead}\:\mathrm{put}\:{m}={p}+{q},\:{n}={p}−{q} \\ $$$$\mathrm{4}{pq}=\mathrm{4}\sqrt{{p}^{\mathrm{2}} −{q}^{\mathrm{2}} } \\ $$$${p}^{\mathrm{2}} {q}^{\mathrm{2}} ={p}^{\mathrm{2}} −{q}^{\mathrm{2}} \\ $$$$\Rightarrow\:{q}=\pm\frac{{p}}{\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\Rightarrow\:{m}={p}\pm\frac{{p}}{\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}},\:{n}={p}\mp\frac{{p}}{\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{but}\:{m}=\mathrm{tan}\:\theta\:+\mathrm{sin}\:\theta \\ $$$$\mathrm{with}\:{p}=\mathrm{tan}\:\theta\:\mathrm{we}\:\mathrm{get}\:\frac{{p}}{\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}=\pm\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:{n}=\mathrm{tan}\:\theta\:−\mathrm{sin}\:\theta \\ $$

Commented by $@ty@m123 last updated on 29/Sep/19

Wonderful!

$${Wonderful}! \\ $$

Commented by Rasheed.Sindhi last updated on 29/Sep/19

Xcellent Sir!

$$\mathcal{X}{cellent}\:\mathcal{S}{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com