Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69765 by Rio Michael last updated on 27/Sep/19

Given that  y = (√(5x^2  + 3)) , show that  when x^2  = (6/5) ,  (d^2 y/dx^(2 ) ) = ((125)/8)

$${Given}\:{that}\:\:{y}\:=\:\sqrt{\mathrm{5}{x}^{\mathrm{2}} \:+\:\mathrm{3}}\:,\:{show}\:{that}\:\:{when}\:{x}^{\mathrm{2}} \:=\:\frac{\mathrm{6}}{\mathrm{5}}\:,\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}\:} }\:=\:\frac{\mathrm{125}}{\mathrm{8}} \\ $$

Answered by MJS last updated on 27/Sep/19

y=(√(5x^2 +3))  (dy/dx)=y′=((5x)/(√(5x^2 +3)))  (d^2 y/dx^2 )=y′′=((15)/((5x^2 +3)^(3/2) ))  =^(x^2 =(6/5))      (5/9)

$${y}=\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{3}} \\ $$$$\frac{{dy}}{{dx}}={y}'=\frac{\mathrm{5}{x}}{\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{3}}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={y}''=\frac{\mathrm{15}}{\left(\mathrm{5}{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{3}/\mathrm{2}} }\:\:\overset{{x}^{\mathrm{2}} =\frac{\mathrm{6}}{\mathrm{5}}} {=}\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{9}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com