Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 69662 by aliesam last updated on 26/Sep/19

prove that    ((2x^3 −x^2 −2x+1)/(x^3 +1)) + ((x^3 +1)/(x^4 −2x^3 +3x^2 −2x+1)) = 2

$${prove}\:{that} \\ $$$$ \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}\:+\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}\:=\:\mathrm{2} \\ $$

Answered by MJS last updated on 26/Sep/19

(((x−1)(2x−1)(x+1))/((x+1)(x^2 −x+1)))+(((x+1)(x^2 −x+1))/((x^2 −x+1)^2 ))=  =(((x−1)(2x−1)+(x+1))/(x^2 −x+1))=((2x^2 −2x+2)/(x^2 −x+1))=2

$$\frac{\left({x}−\mathrm{1}\right)\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}+\frac{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\left({x}−\mathrm{1}\right)\left(\mathrm{2}{x}−\mathrm{1}\right)+\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}=\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}=\mathrm{2} \\ $$

Commented by aliesam last updated on 26/Sep/19

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com