Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69603 by Mikael last updated on 25/Sep/19

∫ x^3 arcsinxdx

$$\int\:{x}^{\mathrm{3}} {arcsinxdx} \\ $$

Answered by MJS last updated on 25/Sep/19

by parts  ∫u′v=uv−∫uv′  u′=x^3  → u=(x^4 /4)  v=arcsin x → v′=(1/(√(1−x^2 )))  ∫x^3 arcsin x dx=(x^4 /4)arcsin x −(1/4)∫(x^4 /(√(1−x^2 )))dx  ∫(x^4 /(√(1−x^2 )))dx=       [t=arcsin x → dx=(√(1−x^2 ))dt]  =∫sin^4  t dt=(1/8)∫cos 4t dt −(1/2)∫cos 2t dt+(3/8)∫dt=  =(1/(32))sin 4t −(1/4)sin 2t +(3/8)t=  =−((1/4)x^3 −(3/8)x)(√(1−x^2 ))+(3/8)arcsin x    ∫x^3 arcsin x dx=((1/4)x^4 −(3/(32)))arcsin x +(1/(32))x(2x^2 +3)(√(1−x^2 ))+C

$$\mathrm{by}\:\mathrm{parts} \\ $$$$\int{u}'{v}={uv}−\int{uv}' \\ $$$${u}'={x}^{\mathrm{3}} \:\rightarrow\:{u}=\frac{{x}^{\mathrm{4}} }{\mathrm{4}} \\ $$$${v}=\mathrm{arcsin}\:{x}\:\rightarrow\:{v}'=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\int{x}^{\mathrm{3}} \mathrm{arcsin}\:{x}\:{dx}=\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\mathrm{arcsin}\:{x}\:−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{x}^{\mathrm{4}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\int\frac{{x}^{\mathrm{4}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:{x}\:\rightarrow\:{dx}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dt}\right] \\ $$$$=\int\mathrm{sin}^{\mathrm{4}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{8}}\int\mathrm{cos}\:\mathrm{4}{t}\:{dt}\:−\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{cos}\:\mathrm{2}{t}\:{dt}+\frac{\mathrm{3}}{\mathrm{8}}\int{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{32}}\mathrm{sin}\:\mathrm{4}{t}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{t}\:+\frac{\mathrm{3}}{\mathrm{8}}{t}= \\ $$$$=−\left(\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{8}}{x}\right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{arcsin}\:{x} \\ $$$$ \\ $$$$\int{x}^{\mathrm{3}} \mathrm{arcsin}\:{x}\:{dx}=\left(\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{32}}\right)\mathrm{arcsin}\:{x}\:+\frac{\mathrm{1}}{\mathrm{32}}{x}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}\right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+{C} \\ $$

Commented by Mikaell last updated on 27/Sep/19

great Sir. thank you.

$${great}\:{Sir}.\:{thank}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com