Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 69569 by Ajao yinka last updated on 25/Sep/19

Answered by naka3546 last updated on 25/Sep/19

Commented by Rasheed.Sindhi last updated on 26/Sep/19

I think ′positive integer′ applies to  x & y only.(So c may be zero)  For a=2,b=1 & c=0:                             x=20,y=5  For (a,b,c)=(3,1,0):                       x=50,y=3

$${I}\:{think}\:'{positive}\:{integer}'\:{applies}\:{to} \\ $$$${x}\:\&\:{y}\:{only}.\left({So}\:{c}\:{may}\:{be}\:{zero}\right) \\ $$$${For}\:{a}=\mathrm{2},{b}=\mathrm{1}\:\&\:{c}=\mathrm{0}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{20},{y}=\mathrm{5} \\ $$$${For}\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{1},\mathrm{0}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{50},{y}=\mathrm{3} \\ $$

Commented by Ajao yinka last updated on 26/Sep/19

cool

$${cool} \\ $$

Answered by Rasheed.Sindhi last updated on 27/Sep/19

   10^a ≤3636⇒a<4  a>b>c:  possibilities for (a,b,c)  (3,2,1),(3,2,0),(3,1,0),(2,1,0)                (a,b,c)=(3,2,1)     _(−)       10^3 +10^2 +10^1 +x^2 +5^y =3636       x^2 +5^y =3636−1110=2526         x=(√(2526−5^y ))  Testing for y=1,2,3,...  x∈Z^+  only for y=3  ∴ for (a,b,c)=(3,2,1): y=3,x=49                (a,b,c)=(3,2,0)     _(−)     10^3 +10^2 +10^0 +x^2 +5^y =3636       x^2 +5^y =3636−1101=2535         x=(√(2535−5^y ))  x is positive integer for no value of y.  ∴ No solution in (a,b,c)=(3,2,0).                (a,b,c)=(3,1,0)     _(−)      10^3 +10^1 +10^0 +x^2 +5^y =3636         x=(√(2625−5^y ))  y=3⇒x=50 (only positive integers)  ∴ for (a,b,c)=(3,1,0):y=3,x=50                (a,b,c)=(2,1,0)     _(−)     10^2 +10^1 +10^1 +x^2 +5^y =3636         x=(√(3525−5^y ))    y=5⇒x=20 (only positive integers)   ∴for (a,b,c)=(2,1,0): y=5,x=20     { (((a,b,c)=(3,2,1):(x,y)=(49,3))),(((a,b,c)=(3,2,0):(x,y)=φ)),(((a,b,c)=(3,1,0):(x,y)=(50,3))),(((a,b,c)=(2,1,0):(x,y)=(20,5))) :}

$$\:\:\:\mathrm{10}^{{a}} \leqslant\mathrm{3636}\Rightarrow{a}<\mathrm{4} \\ $$$${a}>{b}>{c}: \\ $$$${possibilities}\:{for}\:\left({a},{b},{c}\right) \\ $$$$\left(\mathrm{3},\mathrm{2},\mathrm{1}\right),\left(\mathrm{3},\mathrm{2},\mathrm{0}\right),\left(\mathrm{3},\mathrm{1},\mathrm{0}\right),\left(\mathrm{2},\mathrm{1},\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\underset{−} {\:\:\:\:\:\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{2},\mathrm{1}\right)\:\:\:\:\:} \\ $$$$\:\:\:\:\mathrm{10}^{\mathrm{3}} +\mathrm{10}^{\mathrm{2}} +\mathrm{10}^{\mathrm{1}} +{x}^{\mathrm{2}} +\mathrm{5}^{{y}} =\mathrm{3636} \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{5}^{{y}} =\mathrm{3636}−\mathrm{1110}=\mathrm{2526} \\ $$$$\:\:\:\:\:\:\:{x}=\sqrt{\mathrm{2526}−\mathrm{5}^{{y}} } \\ $$$${Testing}\:{for}\:{y}=\mathrm{1},\mathrm{2},\mathrm{3},... \\ $$$${x}\in\mathbb{Z}^{+} \:{only}\:{for}\:{y}=\mathrm{3} \\ $$$$\therefore\:{for}\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{2},\mathrm{1}\right):\:{y}=\mathrm{3},{x}=\mathrm{49} \\ $$$$\:\:\:\:\:\:\:\:\underset{−} {\:\:\:\:\:\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{2},\mathrm{0}\right)\:\:\:\:\:} \\ $$$$\:\:\mathrm{10}^{\mathrm{3}} +\mathrm{10}^{\mathrm{2}} +\mathrm{10}^{\mathrm{0}} +{x}^{\mathrm{2}} +\mathrm{5}^{{y}} =\mathrm{3636} \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{5}^{{y}} =\mathrm{3636}−\mathrm{1101}=\mathrm{2535} \\ $$$$\:\:\:\:\:\:\:{x}=\sqrt{\mathrm{2535}−\mathrm{5}^{{y}} } \\ $$$${x}\:{is}\:{positive}\:{integer}\:{for}\:{no}\:{value}\:{of}\:{y}. \\ $$$$\therefore\:{No}\:{solution}\:{in}\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{2},\mathrm{0}\right). \\ $$$$\:\:\:\:\:\:\:\:\underset{−} {\:\:\:\:\:\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{1},\mathrm{0}\right)\:\:\:\:\:} \\ $$$$\:\:\:\mathrm{10}^{\mathrm{3}} +\mathrm{10}^{\mathrm{1}} +\mathrm{10}^{\mathrm{0}} +{x}^{\mathrm{2}} +\mathrm{5}^{{y}} =\mathrm{3636} \\ $$$$\:\:\:\:\:\:\:{x}=\sqrt{\mathrm{2625}−\mathrm{5}^{{y}} } \\ $$$${y}=\mathrm{3}\Rightarrow{x}=\mathrm{50}\:\left({only}\:{positive}\:{integers}\right) \\ $$$$\therefore\:{for}\:\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{1},\mathrm{0}\right):{y}=\mathrm{3},{x}=\mathrm{50} \\ $$$$\:\:\:\:\:\:\:\:\underset{−} {\:\:\:\:\:\:\left({a},{b},{c}\right)=\left(\mathrm{2},\mathrm{1},\mathrm{0}\right)\:\:\:\:\:} \\ $$$$\:\:\mathrm{10}^{\mathrm{2}} +\mathrm{10}^{\mathrm{1}} +\mathrm{10}^{\mathrm{1}} +{x}^{\mathrm{2}} +\mathrm{5}^{{y}} =\mathrm{3636} \\ $$$$\:\:\:\:\:\:\:{x}=\sqrt{\mathrm{3525}−\mathrm{5}^{{y}} } \\ $$$$\:\:{y}=\mathrm{5}\Rightarrow{x}=\mathrm{20}\:\left({only}\:{positive}\:{integers}\right)\: \\ $$$$\therefore{for}\:\left({a},{b},{c}\right)=\left(\mathrm{2},\mathrm{1},\mathrm{0}\right):\:{y}=\mathrm{5},{x}=\mathrm{20} \\ $$$$ \\ $$$$\begin{cases}{\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{2},\mathrm{1}\right):\left({x},{y}\right)=\left(\mathrm{49},\mathrm{3}\right)}\\{\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{2},\mathrm{0}\right):\left({x},{y}\right)=\phi}\\{\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{1},\mathrm{0}\right):\left({x},{y}\right)=\left(\mathrm{50},\mathrm{3}\right)}\\{\left({a},{b},{c}\right)=\left(\mathrm{2},\mathrm{1},\mathrm{0}\right):\left({x},{y}\right)=\left(\mathrm{20},\mathrm{5}\right)}\end{cases} \\ $$$$ \\ $$

Commented by Ajao yinka last updated on 27/Sep/19

i said positive integer solution,zero is not a positive integer

$${i}\:{said}\:{positive}\:{integer}\:{solution},{zero}\:{is}\:{not}\:{a}\:{positive}\:{integer} \\ $$

Commented by Rasheed.Sindhi last updated on 27/Sep/19

a,b & c are arbitrary constants and x & y are  variables. The condition “positive integersip”  are aplicable to variables here.

$${a},{b}\:\&\:{c}\:{are}\:\boldsymbol{{arbitrary}}\:\boldsymbol{{constant}}{s}\:{and}\:{x}\:\&\:{y}\:{are} \\ $$$${variables}.\:{The}\:{condition}\:``{positive}\:{integersip}'' \\ $$$${are}\:{aplicable}\:{to}\:{variables}\:{here}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com