Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 69568 by Ajao yinka last updated on 25/Sep/19

Commented by mathmax by abdo last updated on 25/Sep/19

 if n=1      H =C     if n≠1  we have z=z^n  ⇔ z^(n−1) =1   let z =r e^(iθ)   so  z^(n−1) =1 ⇔ r^(n−1)  e^(i(n−1)θ)  =e^(i2kπ)  ⇒  r =1 and θ =((2kπ)/(n−1))  with k∈ Z  so the  elements of H are Z_k =e^((i2kπ)/(n−1))    theorem of division give  k =q(n−1) +r  with  0≤r≤n−2 ⇒  Z_k =Z_(q(n−1)+r) =e^((i2(q(n−1)+r)π)/(n−1))  = e^(i2πq +((i2rπ)/(n−1)))  =e^((i2rπ)/(n−1))  =Z_r    so H is finite  and  card H =n−2

$$\:{if}\:{n}=\mathrm{1}\:\:\:\:\:\:{H}\:={C}\:\:\:\:\:{if}\:{n}\neq\mathrm{1}\:\:{we}\:{have}\:{z}={z}^{{n}} \:\Leftrightarrow\:{z}^{{n}−\mathrm{1}} =\mathrm{1}\:\:\:{let}\:{z}\:={r}\:{e}^{{i}\theta} \:\:{so} \\ $$$${z}^{{n}−\mathrm{1}} =\mathrm{1}\:\Leftrightarrow\:{r}^{{n}−\mathrm{1}} \:{e}^{{i}\left({n}−\mathrm{1}\right)\theta} \:={e}^{{i}\mathrm{2}{k}\pi} \:\Rightarrow\:\:{r}\:=\mathrm{1}\:{and}\:\theta\:=\frac{\mathrm{2}{k}\pi}{{n}−\mathrm{1}}\:\:{with}\:{k}\in\:{Z} \\ $$$${so}\:{the}\:\:{elements}\:{of}\:{H}\:{are}\:{Z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{{n}−\mathrm{1}}} \:\:\:{theorem}\:{of}\:{division}\:{give} \\ $$$${k}\:={q}\left({n}−\mathrm{1}\right)\:+{r}\:\:{with}\:\:\mathrm{0}\leqslant{r}\leqslant{n}−\mathrm{2}\:\Rightarrow \\ $$$${Z}_{{k}} ={Z}_{{q}\left({n}−\mathrm{1}\right)+{r}} ={e}^{\frac{{i}\mathrm{2}\left({q}\left({n}−\mathrm{1}\right)+{r}\right)\pi}{{n}−\mathrm{1}}} \:=\:{e}^{{i}\mathrm{2}\pi{q}\:+\frac{{i}\mathrm{2}{r}\pi}{{n}−\mathrm{1}}} \:={e}^{\frac{{i}\mathrm{2}{r}\pi}{{n}−\mathrm{1}}} \:={Z}_{{r}} \:\:\:{so}\:{H}\:{is}\:{finite} \\ $$$${and}\:\:{card}\:{H}\:={n}−\mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 26/Sep/19

forgive card H =n−1

$${forgive}\:{card}\:{H}\:={n}−\mathrm{1} \\ $$

Commented by Ajao yinka last updated on 26/Sep/19

so whats your conclusion

$${so}\:{whats}\:{your}\:{conclusion} \\ $$

Answered by mind is power last updated on 25/Sep/19

H={z∈C∣z^n −z=0}  H is set of roots/of P(X)=X^n −X∈C_n [X]  C is a field So integer domain ⇒card(h)≤Deg(P)=n  So finite

$${H}=\left\{{z}\in\mathbb{C}\mid{z}^{{n}} −{z}=\mathrm{0}\right\} \\ $$$${H}\:{is}\:{set}\:{of}\:{roots}/{of}\:{P}\left({X}\right)={X}^{{n}} −{X}\in\mathbb{C}_{{n}} \left[{X}\right] \\ $$$$\mathbb{C}\:{is}\:{a}\:{field}\:{So}\:{integer}\:{domain}\:\Rightarrow{card}\left({h}\right)\leqslant{Deg}\left({P}\right)={n} \\ $$$${So}\:{finite}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com