Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69566 by Ajao yinka last updated on 25/Sep/19

Answered by mind is power last updated on 25/Sep/19

=lim_(x→+∞) Σ_(k=0) ^x ∫_k ^(k+1) (x−k)^k e^(−nk) dx  =lim_(x→+∞) Σ_(k=0) ^x e^(−nk) ∫_k ^(k+1) (x−k)^k dx  =lim_(x→+∞) Σ_(k=0) ^x e^(−nk) [(((x−k)^(k+1) )/(k+1))]_k ^(k+1)   =lim_(x→+∞) Σ_(k=0) ^x e^(−nk) .(1/(k+1))  A=lim_(x→+∞) Σ_(k=0) ^x e^(−(k+1)n) .(e^n /(k+1))    we have −ln (1−x)=Σ_(k=0) ^(+∞) (x^(k+1) /(k+1))  A=e^n Σ_(k=0) ^(+∞) (((e^(−n) )^(k+1) )/(k+1))=e^n ×−ln(1−e^(−n) )=e^n ln((1/(1−e^(−n) )))=e^n ln ((e^n /(e^n −1)))=e^n (n−ln(e^n −1))

$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sum_{{k}=\mathrm{0}} ^{{x}} \int_{{k}} ^{{k}+\mathrm{1}} \left({x}−{k}\right)^{{k}} {e}^{−{nk}} {dx} \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sum_{{k}=\mathrm{0}} ^{{x}} {e}^{−{nk}} \int_{{k}} ^{{k}+\mathrm{1}} \left({x}−{k}\right)^{{k}} {dx} \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sum_{{k}=\mathrm{0}} ^{{x}} {e}^{−{nk}} \left[\frac{\left({x}−{k}\right)^{{k}+\mathrm{1}} }{{k}+\mathrm{1}}\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sum_{{k}=\mathrm{0}} ^{{x}} {e}^{−{nk}} .\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${A}=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\sum_{{k}=\mathrm{0}} ^{{x}} {e}^{−\left({k}+\mathrm{1}\right){n}} .\frac{{e}^{{n}} }{{k}+\mathrm{1}} \\ $$$$ \\ $$$${we}\:{have}\:−\mathrm{ln}\:\left(\mathrm{1}−{x}\right)=\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{{x}^{{k}+\mathrm{1}} }{{k}+\mathrm{1}} \\ $$$${A}={e}^{{n}} \underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\left({e}^{−{n}} \right)^{{k}+\mathrm{1}} }{{k}+\mathrm{1}}={e}^{{n}} ×−{ln}\left(\mathrm{1}−{e}^{−{n}} \right)={e}^{{n}} {ln}\left(\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}} }\right)={e}^{{n}} \mathrm{ln}\:\left(\frac{{e}^{{n}} }{{e}^{{n}} −\mathrm{1}}\right)={e}^{{n}} \left({n}−{ln}\left({e}^{{n}} −\mathrm{1}\right)\right) \\ $$$$ \\ $$

Commented by Ajao yinka last updated on 26/Sep/19

perfect solution

$${perfect}\:{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com