Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 69412 by ahmadshah last updated on 23/Sep/19

Commented by Rasheed.Sindhi last updated on 23/Sep/19

x=4

$${x}=\mathrm{4} \\ $$

Answered by mr W last updated on 23/Sep/19

generally solve x^(√x) =a>0  x=a^(1/(√x))   ((√x))^2 =a^(1/(√x))   (√x)=a^(1/(2(√x)))   (√x)=e^((ln a)/(2(√x)))   ((ln a)/2)=((ln a)/(2(√x)))e^((ln a)/(2(√x)))   ⇒((ln a)/(2(√x)))=W(((ln a)/2))  ⇒(√x)=((ln a)/(2W(((ln a)/2))))  ⇒x=[((ln a)/(2W(((ln a)/2))))]^2     with a=16:  ln a=4 ln 2  x=[((2ln 2)/(W(2 ln 2)))]^2 =(((2 ln 2)/(0.69317418)))^2 =4    with a=5:  x=[((ln 5)/(2W(((ln 5)/2))))]^2 =(((ln 5)/(2×0.492004741)))^2 ≈2.675161

$${generally}\:{solve}\:{x}^{\sqrt{{x}}} ={a}>\mathrm{0} \\ $$$${x}={a}^{\frac{\mathrm{1}}{\sqrt{{x}}}} \\ $$$$\left(\sqrt{{x}}\right)^{\mathrm{2}} ={a}^{\frac{\mathrm{1}}{\sqrt{{x}}}} \\ $$$$\sqrt{{x}}={a}^{\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}} \\ $$$$\sqrt{{x}}={e}^{\frac{\mathrm{ln}\:{a}}{\mathrm{2}\sqrt{{x}}}} \\ $$$$\frac{\mathrm{ln}\:{a}}{\mathrm{2}}=\frac{\mathrm{ln}\:{a}}{\mathrm{2}\sqrt{{x}}}{e}^{\frac{\mathrm{ln}\:{a}}{\mathrm{2}\sqrt{{x}}}} \\ $$$$\Rightarrow\frac{\mathrm{ln}\:{a}}{\mathrm{2}\sqrt{{x}}}={W}\left(\frac{\mathrm{ln}\:{a}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\sqrt{{x}}=\frac{\mathrm{ln}\:{a}}{\mathrm{2}{W}\left(\frac{\mathrm{ln}\:{a}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow{x}=\left[\frac{\mathrm{ln}\:{a}}{\mathrm{2}{W}\left(\frac{\mathrm{ln}\:{a}}{\mathrm{2}}\right)}\right]^{\mathrm{2}} \\ $$$$ \\ $$$${with}\:{a}=\mathrm{16}: \\ $$$$\mathrm{ln}\:{a}=\mathrm{4}\:\mathrm{ln}\:\mathrm{2} \\ $$$${x}=\left[\frac{\mathrm{2ln}\:\mathrm{2}}{{W}\left(\mathrm{2}\:\mathrm{ln}\:\mathrm{2}\right)}\right]^{\mathrm{2}} =\left(\frac{\mathrm{2}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{0}.\mathrm{69317418}}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$$ \\ $$$${with}\:{a}=\mathrm{5}: \\ $$$${x}=\left[\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{2}{W}\left(\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{2}}\right)}\right]^{\mathrm{2}} =\left(\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{2}×\mathrm{0}.\mathrm{492004741}}\right)^{\mathrm{2}} \approx\mathrm{2}.\mathrm{675161} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com