Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 69130 by Cmr 237 last updated on 21/Sep/19

9Σ_(k=4) ^n (1/(k^3 −6k^2 +11k−6))=?

$$\mathrm{9}\underset{\mathrm{k}=\mathrm{4}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{3}} −\mathrm{6k}^{\mathrm{2}} +\mathrm{11k}−\mathrm{6}}=? \\ $$$$\:\:\:\:\: \\ $$

Commented by Henri Boucatchou last updated on 20/Sep/19

  Please  check  the  question  once  more  (where  k  stats  from  in  Σ_(k=?) ^n )           because  k^3 − 6k^2  + 11k − 6 = (k−1)(k−2)(k−3),  therefore  k  can′t  take  the  values  1, 2, 3.                  note  that  (1/(k^3  − 6k^2  + 11k − 6)) = ((1/2)/(k − 1)) − (1/(k − 2)) + ((1/2)/(k − 3))

$$\:\:\boldsymbol{\mathrm{Please}}\:\:\boldsymbol{\mathrm{check}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{question}}\:\:\boldsymbol{\mathrm{once}}\:\:\boldsymbol{\mathrm{more}}\:\:\left(\boldsymbol{\mathrm{where}}\:\:\boldsymbol{\mathrm{k}}\:\:\boldsymbol{\mathrm{stats}}\:\:\boldsymbol{\mathrm{from}}\:\:\boldsymbol{\mathrm{in}}\:\:\underset{\boldsymbol{\mathrm{k}}=?} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{because}}\:\:\boldsymbol{\mathrm{k}}^{\mathrm{3}} −\:\mathrm{6}\boldsymbol{\mathrm{k}}^{\mathrm{2}} \:+\:\mathrm{11}\boldsymbol{\mathrm{k}}\:−\:\mathrm{6}\:=\:\left(\boldsymbol{\mathrm{k}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{k}}−\mathrm{2}\right)\left(\boldsymbol{\mathrm{k}}−\mathrm{3}\right),\:\:\boldsymbol{\mathrm{therefore}}\:\:\boldsymbol{\mathrm{k}}\:\:\boldsymbol{\mathrm{can}}'\boldsymbol{\mathrm{t}}\:\:\boldsymbol{\mathrm{take}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{values}}\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{note}}\:\:\boldsymbol{\mathrm{that}}\:\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{k}}^{\mathrm{3}} \:−\:\mathrm{6}\boldsymbol{\mathrm{k}}^{\mathrm{2}} \:+\:\mathrm{11}\boldsymbol{\mathrm{k}}\:−\:\mathrm{6}}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\boldsymbol{\mathrm{k}}\:−\:\mathrm{1}}\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{k}}\:−\:\mathrm{2}}\:+\:\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\boldsymbol{\mathrm{k}}\:−\:\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 20/Sep/19

i suppose that the decomposition is correct (i dont verfy it)  ⇒let S_n =Σ_(k=4) ^n   (1/(k^3 −6k^2  +11k−6))  =(1/2)Σ_(k=4) ^n  (1/(k−1))−Σ_(k=4) ^n  (1/(k−2)) +(1/2)Σ_(k=4) ^n  (1/(k−3))  Σ_(k=4) ^n  (1/(k−2)) =Σ_(k=2) ^(n−2)  (1/k) =H_(n−2) −1  Σ_(k=4) ^n  (1/(k−1)) =Σ_(k=3) ^(n−1)  (1/k) =H_(n−1) −1−(1/2) =H_(n−1) −(3/2)  Σ_(k=4) ^n  (1/(k−3)) =Σ_(k=1) ^(n−3)  (1/k) =H_(n−3)  ⇒  S_n =(1/2)H_(n−1) −(3/4) −H_(n−2) +1 +(1/2)H_(n−3)  ⇒  S_n ∼(1/2){ ln(n−1)+γ +o((1/(n−1)))+ln(n−3)+γ +o((1/(n−3))))  −ln(n−2)−γ +o((1/(n−2)))+(1/4)  S_n ∼ln(√((n−1)(n−3)))  −ln(n−2) +(1/4)o((1/(n−3))) ⇒  S_n ∼ln(((√(n^2 −4n+3))/(n−2)))+(1/4) ⇒ lim_(n→+∞)  S_n =(1/4) ⇒  lim_(n→+∞)  9S_n =(9/4)    (γ is the constant of euler)

$${i}\:{suppose}\:{that}\:{the}\:{decomposition}\:{is}\:{correct}\:\left({i}\:{dont}\:{verfy}\:{it}\right) \\ $$$$\Rightarrow{let}\:{S}_{{n}} =\sum_{{k}=\mathrm{4}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{3}} −\mathrm{6}{k}^{\mathrm{2}} \:+\mathrm{11}{k}−\mathrm{6}}\:\:=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{4}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{1}}−\sum_{{k}=\mathrm{4}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{4}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{3}} \\ $$$$\sum_{{k}=\mathrm{4}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{2}}\:=\sum_{{k}=\mathrm{2}} ^{{n}−\mathrm{2}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}−\mathrm{2}} −\mathrm{1} \\ $$$$\sum_{{k}=\mathrm{4}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{1}}\:=\sum_{{k}=\mathrm{3}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}−\mathrm{1}} −\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:={H}_{{n}−\mathrm{1}} −\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\sum_{{k}=\mathrm{4}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{3}}\:=\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{3}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}−\mathrm{3}} \:\Rightarrow \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}−\mathrm{1}} −\frac{\mathrm{3}}{\mathrm{4}}\:−{H}_{{n}−\mathrm{2}} +\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}−\mathrm{3}} \:\Rightarrow \\ $$$${S}_{{n}} \sim\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{ln}\left({n}−\mathrm{1}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}−\mathrm{1}}\right)+{ln}\left({n}−\mathrm{3}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}−\mathrm{3}}\right)\right) \\ $$$$−{ln}\left({n}−\mathrm{2}\right)−\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}−\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${S}_{{n}} \sim{ln}\sqrt{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{3}\right)}\:\:−{ln}\left({n}−\mathrm{2}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}{o}\left(\frac{\mathrm{1}}{{n}−\mathrm{3}}\right)\:\Rightarrow \\ $$$${S}_{{n}} \sim{ln}\left(\frac{\sqrt{{n}^{\mathrm{2}} −\mathrm{4}{n}+\mathrm{3}}}{{n}−\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\mathrm{9}{S}_{{n}} =\frac{\mathrm{9}}{\mathrm{4}}\:\:\:\:\left(\gamma\:{is}\:{the}\:{constant}\:{of}\:{euler}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 20/Sep/19

the sommation begin from 4 not from 1!

$${the}\:{sommation}\:{begin}\:{from}\:\mathrm{4}\:{not}\:{from}\:\mathrm{1}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com