Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 68618 by Rio Michael last updated on 14/Sep/19

solve for x the following equations  a) log x^3  − 2log x^2  + 2log x  + 2log (√x) = 3  b) log_x 24 −3log_x 4  + 2log_x 3 =−3

$${solve}\:{for}\:{x}\:{the}\:{following}\:{equations} \\ $$$$\left.{a}\right)\:{log}\:{x}^{\mathrm{3}} \:−\:\mathrm{2}{log}\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{log}\:{x}\:\:+\:\mathrm{2}{log}\:\sqrt{{x}}\:=\:\mathrm{3} \\ $$$$\left.{b}\right)\:{log}_{{x}} \mathrm{24}\:−\mathrm{3}{log}_{{x}} \mathrm{4}\:\:+\:\mathrm{2}{log}_{{x}} \mathrm{3}\:=−\mathrm{3} \\ $$

Answered by Rasheed.Sindhi last updated on 14/Sep/19

a) log x^3  − 2log x^2  + 2log x  + 2log (√x) = 3  b) log_x 24 −3log_x 4  + 2log_x 3 =−3       a)⇒3log x−4logx+2logx+logx=3          2log x=3      x=Antilog((3/2))=10^(3/2) =(√(1000))=10(√(10))  b) log_x 24 −3log_x 4  + 2log_x 3 =−3       log_x 24−log_x 4^3 +log_x 3^2 =−3       log_x (((24×9)/(64)))=−3       log_x (((27)/8))=−3          x^(−3) =((27)/8)=((3/2))^3 =((2/3))^(−3)           x=(2/3)

$$\left.{a}\right)\:{log}\:{x}^{\mathrm{3}} \:−\:\mathrm{2}{log}\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{log}\:{x}\:\:+\:\mathrm{2}{log}\:\sqrt{{x}}\:=\:\mathrm{3} \\ $$$$\left.{b}\right)\:{log}_{{x}} \mathrm{24}\:−\mathrm{3}{log}_{{x}} \mathrm{4}\:\:+\:\mathrm{2}{log}_{{x}} \mathrm{3}\:=−\mathrm{3} \\ $$$$\:\:\: \\ $$$$\left.\mathrm{a}\right)\Rightarrow\mathrm{3log}\:\mathrm{x}−\mathrm{4logx}+\mathrm{2logx}+\mathrm{logx}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2log}\:\mathrm{x}=\mathrm{3} \\ $$$$\:\:\:\:\mathrm{x}=\mathrm{Antilog}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{10}^{\frac{\mathrm{3}}{\mathrm{2}}} =\sqrt{\mathrm{1000}}=\mathrm{10}\sqrt{\mathrm{10}} \\ $$$$\left.{b}\right)\:{log}_{{x}} \mathrm{24}\:−\mathrm{3}{log}_{{x}} \mathrm{4}\:\:+\:\mathrm{2}{log}_{{x}} \mathrm{3}\:=−\mathrm{3} \\ $$$$\:\:\:\:\:\mathrm{log}_{\mathrm{x}} \mathrm{24}−\mathrm{log}_{\mathrm{x}} \mathrm{4}^{\mathrm{3}} +\mathrm{log}_{\mathrm{x}} \mathrm{3}^{\mathrm{2}} =−\mathrm{3} \\ $$$$\:\:\:\:\:\mathrm{log}_{\mathrm{x}} \left(\frac{\mathrm{24}×\mathrm{9}}{\mathrm{64}}\right)=−\mathrm{3} \\ $$$$\:\:\:\:\:\mathrm{log}_{\mathrm{x}} \left(\frac{\mathrm{27}}{\mathrm{8}}\right)=−\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}^{−\mathrm{3}} =\frac{\mathrm{27}}{\mathrm{8}}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} =\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{−\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by Rio Michael last updated on 15/Sep/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com