Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 68616 by Rio Michael last updated on 14/Sep/19

given that a,b and c are positive numbers other than 1  , show that  log_b a × log_c b × log_a c = 1  hence, evaluate   log_(10) 25 × log_2 10 × log_5 4

$${given}\:{that}\:{a},{b}\:{and}\:{c}\:{are}\:{positive}\:{numbers}\:{other}\:{than}\:\mathrm{1} \\ $$$$,\:{show}\:{that}\:\:{log}_{{b}} {a}\:×\:{log}_{{c}} {b}\:×\:{log}_{{a}} {c}\:=\:\mathrm{1} \\ $$$${hence},\:{evaluate}\:\:\:{log}_{\mathrm{10}} \mathrm{25}\:×\:{log}_{\mathrm{2}} \mathrm{10}\:×\:{log}_{\mathrm{5}} \mathrm{4} \\ $$

Answered by $@ty@m123 last updated on 14/Sep/19

Let log_b  a=x,  log_c b=y, log_a c=z  ⇒b^x =a, c^y =b, a^z =c  Now,  a^z =c               [((Note: you can proceed)),((with b^x =a or c^y =b also.)) ]  ⇒(b^x )^z =c      ⇒(c^y )^(xz) =c  ⇒c^(xyz) =c  ⇒xyz=1  ⇒log_b a × log_c b × log_a c = 1

$${Let}\:\mathrm{log}_{{b}} \:{a}={x},\:\:{log}_{{c}} {b}={y},\:{log}_{{a}} {c}={z} \\ $$$$\Rightarrow{b}^{{x}} ={a},\:{c}^{{y}} ={b},\:{a}^{{z}} ={c} \\ $$$${Now}, \\ $$$${a}^{{z}} ={c}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{bmatrix}{{Note}:\:{you}\:{can}\:{proceed}}\\{{with}\:{b}^{{x}} ={a}\:{or}\:{c}^{{y}} ={b}\:{also}.}\end{bmatrix} \\ $$$$\Rightarrow\left({b}^{{x}} \right)^{{z}} ={c}\:\:\:\: \\ $$$$\Rightarrow\left({c}^{{y}} \right)^{{xz}} ={c} \\ $$$$\Rightarrow{c}^{{xyz}} ={c} \\ $$$$\Rightarrow{xyz}=\mathrm{1} \\ $$$$\Rightarrow{log}_{{b}} {a}\:×\:{log}_{{c}} {b}\:×\:{log}_{{a}} {c}\:=\:\mathrm{1} \\ $$

Answered by $@ty@m123 last updated on 14/Sep/19

Hence  log_(10) 25 × log_2 10 × log_5 4  =2log_(10)  5×log_2 10 ×2 log_5 2  =4(log_(10)  5×log_2 10 ×log_5 2)  =4×1=4

$${Hence} \\ $$$${log}_{\mathrm{10}} \mathrm{25}\:×\:{log}_{\mathrm{2}} \mathrm{10}\:×\:{log}_{\mathrm{5}} \mathrm{4} \\ $$$$=\mathrm{2log}_{\mathrm{10}} \:\mathrm{5}×{log}_{\mathrm{2}} \mathrm{10}\:×\mathrm{2}\:{log}_{\mathrm{5}} \mathrm{2} \\ $$$$=\mathrm{4}\left(\mathrm{log}_{\mathrm{10}} \:\mathrm{5}×{log}_{\mathrm{2}} \mathrm{10}\:×{log}_{\mathrm{5}} \mathrm{2}\right) \\ $$$$=\mathrm{4}×\mathrm{1}=\mathrm{4} \\ $$

Commented by Rio Michael last updated on 14/Sep/19

thanks so much

$${thanks}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com