All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 68598 by Abdo msup. last updated on 14/Sep/19
find∫dxx3−4x+3
Commented by turbo msup by abdo last updated on 14/Sep/19
letI=∫dxx3−4x+3letdecomposeF(x)=1x3−4x+3wehavex3−4x+3=x3−x−3x+3=x(x2−1)−3(x−1)=(x−1)(x(x+1)−3)=(x−1)(x2+x−3)⇒F(x)=ax−1+bx+cx2+x−3=1(x−1)(x2+x−3)a=limx→1(x−1)F(x)=−1limx→+∞xF(x)=0=a+b⇒b=1⇒F(x)=−1x−1+x+cx2+x−3F(0)=13=1−c3⇒1=3−c⇒c=2⇒F(x)=−1x−1+x+2x2+x−3⇒I=∫(−1x−1+x+2x2+x−3)dx=−ln∣x−1∣+12∫2x+1+3x2+x−3dx=−ln∣x−1∣+12ln∣x2+x−3∣+32∫dxx2+x−3wehave∫dxx2+x−3=∫dxx2+2x12+14−3−14=∫dx(x+12)2−134=x+12=132u413∫1u2−1132du=113∫(1u−1−1u+1)du=113ln∣u−1u+1∣+c=113ln∣2x+113−12x+113+1∣⇒I=−ln∣x−1∣+12ln∣x2+x−3∣+3213ln∣2x+1−132x+1+13∣+c.
Commented by som(math1967) last updated on 14/Sep/19
∫dx(x−1)(x2+x−3)let(x−1)(Ax+B)+C(x2+x−3)=1puttingx=1.....C=−1x=0........B=2x=−1........A=1∴∫{(x−1)(x+2)−(x2+x−3)}dx(x−1)(x2+x−3)=∫(x+2)dx(x2+x−3)−∫dx(x−1)=12∫(2x+4)dxx2+x−3−ln(x−1)=12∫d(x2+x−3)(x2+x−3)+32∫dx(x+12)2−(132)2−lnx=12ln(x2+x−3)+32×113ln(x+12−132x+12+132)−ln(x−1)+K
Terms of Service
Privacy Policy
Contact: info@tinkutara.com