Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68481 by ajfour last updated on 11/Sep/19

I=∫_0 ^( 1) (√((c−x^2 )/(x(1−x^2 ))))dx      (c >1)

$${I}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{\frac{{c}−{x}^{\mathrm{2}} }{{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}}{dx}\:\:\:\:\:\:\left({c}\:>\mathrm{1}\right) \\ $$

Commented byMJS last updated on 11/Sep/19

I tried everything I know, it seems impossible  to solve

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{everything}\:\mathrm{I}\:\mathrm{know},\:\mathrm{it}\:\mathrm{seems}\:\mathrm{impossible} \\ $$ $$\mathrm{to}\:\mathrm{solve} \\ $$

Commented byKunal12588 last updated on 12/Sep/19

Commented byKunal12588 last updated on 12/Sep/19

Commented byMJS last updated on 12/Sep/19

((2x(√(1−x^2 ))(√((c−x^2 )/(x−x^3 ))))/(√(1−(x^2 /c))))=2(√(cx))  ⇒ [2(√(cx))F_1 (...)]_0 ^1 =2(√c)F_1 ((1/4); −(1/2), (1/2); (5/4); (1/c), 1)

$$\frac{\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\sqrt{\frac{{c}−{x}^{\mathrm{2}} }{{x}−{x}^{\mathrm{3}} }}}{\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{c}}}}=\mathrm{2}\sqrt{{cx}} \\ $$ $$\Rightarrow\:\left[\mathrm{2}\sqrt{{cx}}\mathrm{F}_{\mathrm{1}} \left(...\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{2}\sqrt{{c}}\mathrm{F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}};\:−\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{2}};\:\frac{\mathrm{5}}{\mathrm{4}};\:\frac{\mathrm{1}}{{c}},\:\mathrm{1}\right) \\ $$

Commented byMJS last updated on 12/Sep/19

Sir Kunal, can you calculate it now?

$$\mathrm{Sir}\:\mathrm{Kunal},\:\mathrm{can}\:\mathrm{you}\:\mathrm{calculate}\:\mathrm{it}\:\mathrm{now}? \\ $$

Commented byMJS last updated on 12/Sep/19

I found this:  F_1 (a, b_1 , b_2 , c; x; y)=((Γ(c))/(Γ(a)Γ(c−a)))∫_0 ^1 t^(a−1) (1−t)^(c−a−1) (1−xt)^(−b_1 ) (1−yt)^(−b_2 ) dt  in our case this leads to  ((√c)/2) ∫_0 ^1  ((√(c−t))/(t^(3/4) (√(c(1−t)))))dt  ...but is this easier?

$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}: \\ $$ $$\mathrm{F}_{\mathrm{1}} \left({a},\:{b}_{\mathrm{1}} ,\:{b}_{\mathrm{2}} ,\:{c};\:{x};\:{y}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({a}\right)\Gamma\left({c}−{a}\right)}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{t}^{{a}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{c}−{a}−\mathrm{1}} \left(\mathrm{1}−{xt}\right)^{−{b}_{\mathrm{1}} } \left(\mathrm{1}−{yt}\right)^{−{b}_{\mathrm{2}} } {dt} \\ $$ $$\mathrm{in}\:\mathrm{our}\:\mathrm{case}\:\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$ $$\frac{\sqrt{{c}}}{\mathrm{2}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\sqrt{{c}−{t}}}{{t}^{\mathrm{3}/\mathrm{4}} \sqrt{{c}\left(\mathrm{1}−{t}\right)}}{dt} \\ $$ $$...\mathrm{but}\:\mathrm{is}\:\mathrm{this}\:\mathrm{easier}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com