Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 68272 by peter frank last updated on 08/Sep/19

Answered by Kunal12588 last updated on 08/Sep/19

H_(max) =maximum height  R=horizontal range  H_(max) =h=(u_y ^2 /(2g))⇒u_y =(√(2gh))  R=r=((2u_x u_y )/g)⇒u_x =((gr)/(2u_y ))=((gr)/(2(√(2gh))))=(r/2)(√(g/(2h)))  u=(√(u_x ^2 +u_y ^2 ))  =(√(((r^2 g)/(8h))+2gh))  =(√(2g((r^2 /(16h))+h)))  =[2g(h+(r^2 /(16h)))]^(1/2)

$${H}_{{max}} ={maximum}\:{height} \\ $$$${R}={horizontal}\:{range} \\ $$$${H}_{{max}} ={h}=\frac{{u}_{{y}} ^{\mathrm{2}} }{\mathrm{2}{g}}\Rightarrow{u}_{{y}} =\sqrt{\mathrm{2}{gh}} \\ $$$${R}={r}=\frac{\mathrm{2}{u}_{{x}} {u}_{{y}} }{{g}}\Rightarrow{u}_{{x}} =\frac{{gr}}{\mathrm{2}{u}_{{y}} }=\frac{{gr}}{\mathrm{2}\sqrt{\mathrm{2}{gh}}}=\frac{{r}}{\mathrm{2}}\sqrt{\frac{{g}}{\mathrm{2}{h}}} \\ $$$${u}=\sqrt{{u}_{{x}} ^{\mathrm{2}} +{u}_{{y}} ^{\mathrm{2}} } \\ $$$$=\sqrt{\frac{{r}^{\mathrm{2}} {g}}{\mathrm{8}{h}}+\mathrm{2}{gh}} \\ $$$$=\sqrt{\mathrm{2}{g}\left(\frac{{r}^{\mathrm{2}} }{\mathrm{16}{h}}+{h}\right)} \\ $$$$=\left[\mathrm{2}{g}\left({h}+\frac{{r}^{\mathrm{2}} }{\mathrm{16}{h}}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Commented by peter frank last updated on 08/Sep/19

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com