Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 6820 by Tawakalitu. last updated on 29/Jul/16

The position vector of the point P  at time t is given by   (αtant)i + (αsect)k where α is positive constant and  0≤t≤(Π/2).  Show that the velocity and acceleration of P  when  t = 0 are at right angle to each other. If A is the point with   position vector αj, obtain the vector equation for the straight   line AP at time t.  If the point Q divides AP  internally in the  ratio (cost) : (1 − cost). Show that the acceleration of the point  Q is constant in magnitude and is always directed towards a   fixed point.

$${The}\:{position}\:{vector}\:{of}\:{the}\:{point}\:{P}\:\:{at}\:{time}\:{t}\:{is}\:{given}\:{by}\: \\ $$$$\left(\alpha{tant}\right){i}\:+\:\left(\alpha{sect}\right){k}\:{where}\:\alpha\:{is}\:{positive}\:{constant}\:{and} \\ $$$$\mathrm{0}\leqslant{t}\leqslant\frac{\Pi}{\mathrm{2}}.\:\:{Show}\:{that}\:{the}\:{velocity}\:{and}\:{acceleration}\:{of}\:{P}\:\:{when} \\ $$$${t}\:=\:\mathrm{0}\:{are}\:{at}\:{right}\:{angle}\:{to}\:{each}\:{other}.\:{If}\:{A}\:{is}\:{the}\:{point}\:{with}\: \\ $$$${position}\:{vector}\:\alpha{j},\:{obtain}\:{the}\:{vector}\:{equation}\:{for}\:{the}\:{straight}\: \\ $$$${line}\:{AP}\:{at}\:{time}\:{t}.\:\:{If}\:{the}\:{point}\:{Q}\:{divides}\:{AP}\:\:{internally}\:{in}\:{the} \\ $$$${ratio}\:\left({cost}\right)\::\:\left(\mathrm{1}\:−\:{cost}\right).\:{Show}\:{that}\:{the}\:{acceleration}\:{of}\:{the}\:{point} \\ $$$${Q}\:{is}\:{constant}\:{in}\:{magnitude}\:{and}\:{is}\:{always}\:{directed}\:{towards}\:{a}\: \\ $$$${fixed}\:{point}. \\ $$

Commented by Yozzii last updated on 29/Jul/16

p(t)= (((αtant)),(0),((αsect)) )    α=constant>0, t∈[0,(π/2)]  ⇒(dp/dt)(t)=v_p (t)= (((αsec^2 t)),(0),((αsect×tant)) )  ⇒(d^2 p/dt^2 )(t)=a_p (t)= (((2αsec^2 t×tant)),(0),((α(sect×tant×tant+sec^3 t))) )  a_p (t)= (((2αtantsec^2 t)),(0),((α(tan^2 t+sec^2 t)sect)) )  v_p (0)= ((α),(0),(0) ) , a_p (0)= ((0),(0),(α) )  ∴ v_p (0)•a_p (0)=α×0+0×0+0×α=0  Since v_p (0)•a_p (0)=0, the velocity  and acceleration are perpendicular  to each other at t=0.  a(t)= ((0),(α),(0) )  Direction vector of line AP is parallel to  b(t)=p(t)−a(t)= (((αtant)),((−α)),((αsect)) )=α (((tant)),((−1)),((sect)) )  So, the vector equation of the line AP is  r= ((0),(α),(0) ) +μ (((tant)),((−1)),((sect)) )   (μ∈R).  For Q dividing AP in the ratio (cost):(1−cost),  μ=cost (OQ=OA+cost(AP))  ∴ q(t)= ((0),(α),(0) ) +cost (((tant)),((−1)),((sect)) )  q(t)= (((sint)),((α−cost)),(1) )  v_q (t)=((dq(t))/dt)= (((cost)),((sint)),(0) )  a_q (t)=((dv_q (t))/dt)= (((−sint)),((cost)),(0) )  ⇒∣a_q (t)∣=(√((−sint)^2 +(cost)^2 +0^2 ))=1  Since ∣a_q (t)∣=1 for all t∈[0,(π/2)], the  acceleration of the point Q is constant in  magnitude.  Since the acceleration of Q has  no component parallel to the unit vector k,  but variable components parallel to i and j,  a_q (t) acts entirely in the plane containing  both the vectors i and j.   Observe that v_q (t)•a_q (t)=0  ⇒velocity and accleration of Q  are normal to each other.

$$\boldsymbol{{p}}\left({t}\right)=\begin{pmatrix}{\alpha{tant}}\\{\mathrm{0}}\\{\alpha{sect}}\end{pmatrix}\:\:\:\:\alpha={constant}>\mathrm{0},\:{t}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow\frac{{d}\boldsymbol{{p}}}{{dt}}\left({t}\right)=\boldsymbol{{v}}_{{p}} \left({t}\right)=\begin{pmatrix}{\alpha{sec}^{\mathrm{2}} {t}}\\{\mathrm{0}}\\{\alpha{sect}×{tant}}\end{pmatrix} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \boldsymbol{{p}}}{{dt}^{\mathrm{2}} }\left({t}\right)=\boldsymbol{{a}}_{{p}} \left({t}\right)=\begin{pmatrix}{\mathrm{2}\alpha{sec}^{\mathrm{2}} {t}×{tant}}\\{\mathrm{0}}\\{\alpha\left({sect}×{tant}×{tant}+{sec}^{\mathrm{3}} {t}\right)}\end{pmatrix} \\ $$$$\boldsymbol{{a}}_{{p}} \left({t}\right)=\begin{pmatrix}{\mathrm{2}\alpha{tantsec}^{\mathrm{2}} {t}}\\{\mathrm{0}}\\{\alpha\left({tan}^{\mathrm{2}} {t}+{sec}^{\mathrm{2}} {t}\right){sect}}\end{pmatrix} \\ $$$$\boldsymbol{{v}}_{{p}} \left(\mathrm{0}\right)=\begin{pmatrix}{\alpha}\\{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:,\:\boldsymbol{{a}}_{{p}} \left(\mathrm{0}\right)=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\alpha}\end{pmatrix} \\ $$$$\therefore\:\boldsymbol{{v}}_{{p}} \left(\mathrm{0}\right)\bullet\boldsymbol{{a}}_{{p}} \left(\mathrm{0}\right)=\alpha×\mathrm{0}+\mathrm{0}×\mathrm{0}+\mathrm{0}×\alpha=\mathrm{0} \\ $$$${Since}\:\boldsymbol{{v}}_{{p}} \left(\mathrm{0}\right)\bullet\boldsymbol{{a}}_{{p}} \left(\mathrm{0}\right)=\mathrm{0},\:{the}\:{velocity} \\ $$$${and}\:{acceleration}\:{are}\:{perpendicular} \\ $$$${to}\:{each}\:{other}\:{at}\:{t}=\mathrm{0}. \\ $$$$\boldsymbol{{a}}\left({t}\right)=\begin{pmatrix}{\mathrm{0}}\\{\alpha}\\{\mathrm{0}}\end{pmatrix} \\ $$$${Direction}\:{vector}\:{of}\:{line}\:{AP}\:{is}\:{parallel}\:{to} \\ $$$$\boldsymbol{{b}}\left({t}\right)=\boldsymbol{{p}}\left({t}\right)−\boldsymbol{{a}}\left({t}\right)=\begin{pmatrix}{\alpha{tant}}\\{−\alpha}\\{\alpha{sect}}\end{pmatrix}=\alpha\begin{pmatrix}{{tant}}\\{−\mathrm{1}}\\{{sect}}\end{pmatrix} \\ $$$${So},\:{the}\:{vector}\:{equation}\:{of}\:{the}\:{line}\:{AP}\:{is} \\ $$$$\boldsymbol{{r}}=\begin{pmatrix}{\mathrm{0}}\\{\alpha}\\{\mathrm{0}}\end{pmatrix}\:+\mu\begin{pmatrix}{{tant}}\\{−\mathrm{1}}\\{{sect}}\end{pmatrix}\:\:\:\left(\mu\in\mathbb{R}\right). \\ $$$${For}\:{Q}\:{dividing}\:{AP}\:{in}\:{the}\:{ratio}\:\left({cost}\right):\left(\mathrm{1}−{cost}\right), \\ $$$$\mu={cost}\:\left({OQ}={OA}+{cost}\left({AP}\right)\right) \\ $$$$\therefore\:\boldsymbol{{q}}\left({t}\right)=\begin{pmatrix}{\mathrm{0}}\\{\alpha}\\{\mathrm{0}}\end{pmatrix}\:+{cost}\begin{pmatrix}{{tant}}\\{−\mathrm{1}}\\{{sect}}\end{pmatrix} \\ $$$$\boldsymbol{{q}}\left({t}\right)=\begin{pmatrix}{{sint}}\\{\alpha−{cost}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\boldsymbol{{v}}_{{q}} \left({t}\right)=\frac{{d}\boldsymbol{{q}}\left({t}\right)}{{dt}}=\begin{pmatrix}{{cost}}\\{{sint}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\boldsymbol{{a}}_{{q}} \left({t}\right)=\frac{{d}\boldsymbol{{v}}_{{q}} \left({t}\right)}{{dt}}=\begin{pmatrix}{−{sint}}\\{{cost}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\Rightarrow\mid\boldsymbol{{a}}_{{q}} \left({t}\right)\mid=\sqrt{\left(−{sint}\right)^{\mathrm{2}} +\left({cost}\right)^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} }=\mathrm{1} \\ $$$${Since}\:\mid\boldsymbol{{a}}_{{q}} \left({t}\right)\mid=\mathrm{1}\:{for}\:{all}\:{t}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right],\:{the} \\ $$$${acceleration}\:{of}\:{the}\:{point}\:{Q}\:{is}\:{constant}\:{in} \\ $$$${magnitude}. \\ $$$${Since}\:{the}\:{acceleration}\:{of}\:{Q}\:{has} \\ $$$${no}\:{component}\:{parallel}\:{to}\:{the}\:{unit}\:{vector}\:\boldsymbol{{k}}, \\ $$$${but}\:{variable}\:{components}\:{parallel}\:{to}\:\boldsymbol{{i}}\:{and}\:\boldsymbol{{j}}, \\ $$$$\boldsymbol{{a}}_{{q}} \left({t}\right)\:{acts}\:{entirely}\:{in}\:{the}\:{plane}\:{containing} \\ $$$${both}\:{the}\:{vectors}\:\boldsymbol{{i}}\:{and}\:\boldsymbol{{j}}.\: \\ $$$${Observe}\:{that}\:\boldsymbol{{v}}_{{q}} \left({t}\right)\bullet\boldsymbol{{a}}_{{q}} \left({t}\right)=\mathrm{0} \\ $$$$\Rightarrow{velocity}\:{and}\:{accleration}\:{of}\:{Q} \\ $$$${are}\:{normal}\:{to}\:{each}\:{other}. \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 30/Jul/16

Thanks so much. i appreciate your time

$${Thanks}\:{so}\:{much}.\:{i}\:{appreciate}\:{your}\:{time} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com