Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 68178 by Mikael last updated on 06/Sep/19

lim_(x→0)  (((cosx)^(sin2x) −1)/x^3 )=?

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\left({cosx}\right)^{{sin}\mathrm{2}{x}} −\mathrm{1}}{{x}^{\mathrm{3}} }=? \\ $$

Commented by mathmax by abdo last updated on 06/Sep/19

let f(x) =(((cosx)^(sin(2x)) −1)/x^3 )  we have f(x)=((e^(sin(2x)ln(cosx)) −1)/x^3 )  we have cosx ∼1−(x^2 /2) ⇒ln(cosx)∼ln(1−(x^2 /2))  ln^′ (1−u) =((−1)/(1−u)) =−(1+u+o(u)) ⇒  ln(1−u) =−u−(u^2 /2) +o(u^2 ) ⇒ln(1−(x^2 /2))=−(x^2 /2)−(x^4 /4) +o(x^4 )  also  sin(2x)∼2x⇒sin(2x)ln(cosx) ∼2x(−(x^2 /2)−(x^4 /4))  =−x^3 −(1/2)x^5  ⇒e^(sin(2x)ln(cosx)) ∼e^(−x^3 −(1/2)x^5 )  ∼1−x^3 −(1/2)x^5  ⇒  f(x)∼  ((−x^3 −(1/2)x^5 )/x^3 ) ⇒f(x)∼−1−(1/2)x^2   ⇒lim_(x→0) f(x) =−1

$${let}\:{f}\left({x}\right)\:=\frac{\left({cosx}\right)^{{sin}\left(\mathrm{2}{x}\right)} −\mathrm{1}}{{x}^{\mathrm{3}} }\:\:{we}\:{have}\:{f}\left({x}\right)=\frac{{e}^{{sin}\left(\mathrm{2}{x}\right){ln}\left({cosx}\right)} −\mathrm{1}}{{x}^{\mathrm{3}} } \\ $$$${we}\:{have}\:{cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow{ln}\left({cosx}\right)\sim{ln}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$${ln}^{'} \left(\mathrm{1}−{u}\right)\:=\frac{−\mathrm{1}}{\mathrm{1}−{u}}\:=−\left(\mathrm{1}+{u}+{o}\left({u}\right)\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{u}\right)\:=−{u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({u}^{\mathrm{2}} \right)\:\Rightarrow{ln}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)=−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\:+{o}\left({x}^{\mathrm{4}} \right) \\ $$$${also}\:\:{sin}\left(\mathrm{2}{x}\right)\sim\mathrm{2}{x}\Rightarrow{sin}\left(\mathrm{2}{x}\right){ln}\left({cosx}\right)\:\sim\mathrm{2}{x}\left(−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\right) \\ $$$$=−{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{5}} \:\Rightarrow{e}^{{sin}\left(\mathrm{2}{x}\right){ln}\left({cosx}\right)} \sim{e}^{−{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{5}} } \:\sim\mathrm{1}−{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{5}} \:\Rightarrow \\ $$$${f}\left({x}\right)\sim\:\:\frac{−{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{5}} }{{x}^{\mathrm{3}} }\:\Rightarrow{f}\left({x}\right)\sim−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \:\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:=−\mathrm{1} \\ $$

Commented by Mikael last updated on 06/Sep/19

thank you.

$${thank}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com