Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 68308 by mr W last updated on 08/Sep/19

solve y′′′=y′′y′

$${solve}\:{y}'''={y}''{y}' \\ $$

Answered by mind is power last updated on 08/Sep/19

(y^(′′′) /(y′^′ ))=y′  ⇒ln(∣y′′∣)=y+c  ⇒y^(′′) =ke^y   ⇒y^′ y^(′′) =ky^′ e^y   ⇒(1/2)(y′)^2 =ke^y +c  ⇒(y^′ )^2 =2ke^y +2c  ⇒y^′ =+_− (√((ae^y +b)))  ⇒(dy/(√(ae^y +b)))=dx  ∫(dy/(√(ae^y +b)))  let z=(√()ae^y +b)  y=ln(((z^2 −b)/a))  dy=((2z)/(z^2 −b))  ⇒∫(2/(z^2 −b))dz=x+c its easy to find z than y  three condition b=0   b>0 and b<0

$$\frac{{y}^{'''} }{{y}'^{'} }={y}' \\ $$$$\Rightarrow{ln}\left(\mid{y}''\mid\right)={y}+{c} \\ $$$$\Rightarrow{y}^{''} ={ke}^{{y}} \\ $$$$\Rightarrow{y}^{'} {y}^{''} ={ky}^{'} {e}^{{y}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left({y}'\right)^{\mathrm{2}} ={ke}^{{y}} +{c} \\ $$$$\Rightarrow\left({y}^{'} \right)^{\mathrm{2}} =\mathrm{2}{ke}^{{y}} +\mathrm{2}{c} \\ $$$$\Rightarrow{y}^{'} =\underset{−} {+}\sqrt{\left({ae}^{{y}} +{b}\right)} \\ $$$$\Rightarrow\frac{{dy}}{\sqrt{{ae}^{{y}} +{b}}}={dx} \\ $$$$\int\frac{{dy}}{\sqrt{{ae}^{{y}} +{b}}} \\ $$$$\left.{let}\:{z}=\sqrt{\left(\right.}{ae}^{{y}} +{b}\right) \\ $$$${y}={ln}\left(\frac{{z}^{\mathrm{2}} −{b}}{{a}}\right) \\ $$$${dy}=\frac{\mathrm{2}{z}}{{z}^{\mathrm{2}} −{b}} \\ $$$$\Rightarrow\int\frac{\mathrm{2}}{{z}^{\mathrm{2}} −{b}}{dz}={x}+{c}\:{its}\:{easy}\:{to}\:{find}\:{z}\:{than}\:{y} \\ $$$${three}\:{condition}\:{b}=\mathrm{0}\:\:\:{b}>\mathrm{0}\:{and}\:{b}<\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com