Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6811 by Tawakalitu. last updated on 28/Jul/16

Let   Σ_(k = 1) ^n  log_2 k  =  1994  find the positive integer n ?

$${Let}\:\:\:\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\:{log}_{\mathrm{2}} {k}\:\:=\:\:\mathrm{1994} \\ $$$${find}\:{the}\:{positive}\:{integer}\:{n}\:? \\ $$

Commented by Yozzii last updated on 29/Jul/16

Σ_(k=1) ^n log_2 k=log_2 1+log_2 2+log_2 3+...+log_2 n=s  s=log_2 (1×2×3×...×n)=log_2 n!  ⇒n!=2^s . But s=1994  ⇒n!=2^(1994)   ?

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{log}_{\mathrm{2}} {k}={log}_{\mathrm{2}} \mathrm{1}+{log}_{\mathrm{2}} \mathrm{2}+{log}_{\mathrm{2}} \mathrm{3}+...+{log}_{\mathrm{2}} {n}={s} \\ $$$${s}={log}_{\mathrm{2}} \left(\mathrm{1}×\mathrm{2}×\mathrm{3}×...×{n}\right)={log}_{\mathrm{2}} {n}! \\ $$$$\Rightarrow{n}!=\mathrm{2}^{{s}} .\:{But}\:{s}=\mathrm{1994} \\ $$$$\Rightarrow{n}!=\mathrm{2}^{\mathrm{1994}} \:\:? \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 29/Jul/16

Thanks so much...    please is that where i will stop ?

$${Thanks}\:{so}\:{much}... \\ $$$$ \\ $$$${please}\:{is}\:{that}\:{where}\:{i}\:{will}\:{stop}\:? \\ $$

Commented by Yozzii last updated on 29/Jul/16

If n=2⇒ n! has only the prime 2 in  its prime factorisation. If n≥3, 3 must  appear in the prime factorisation of  n! with the power of 3 being at least one.  n≥3⇒n!=1×2×3×{4×5×...×n}  or 3 divides n!. This is for n∈N.   In this problem, n∈N. We found that   n!=2^(1994) ⋙6=3!⇒n is at least 3. But,  if n∈N is at least 3 ⇒ 3∣n!. However,  3 does not divide 2^(1994)  or 3∤n! while   min(n)=3. So, no integer n exists satisfying  n!=2^(1994) .

$${If}\:{n}=\mathrm{2}\Rightarrow\:{n}!\:{has}\:{only}\:{the}\:{prime}\:\mathrm{2}\:{in} \\ $$$${its}\:{prime}\:{factorisation}.\:{If}\:{n}\geqslant\mathrm{3},\:\mathrm{3}\:{must} \\ $$$${appear}\:{in}\:{the}\:{prime}\:{factorisation}\:{of} \\ $$$${n}!\:{with}\:{the}\:{power}\:{of}\:\mathrm{3}\:{being}\:{at}\:{least}\:{one}. \\ $$$${n}\geqslant\mathrm{3}\Rightarrow{n}!=\mathrm{1}×\mathrm{2}×\mathrm{3}×\left\{\mathrm{4}×\mathrm{5}×...×{n}\right\} \\ $$$${or}\:\mathrm{3}\:{divides}\:{n}!.\:{This}\:{is}\:{for}\:{n}\in\mathbb{N}.\: \\ $$$${In}\:{this}\:{problem},\:{n}\in\mathbb{N}.\:{We}\:{found}\:{that}\: \\ $$$${n}!=\mathrm{2}^{\mathrm{1994}} \ggg\mathrm{6}=\mathrm{3}!\Rightarrow{n}\:{is}\:{at}\:{least}\:\mathrm{3}.\:{But}, \\ $$$${if}\:{n}\in\mathbb{N}\:{is}\:{at}\:{least}\:\mathrm{3}\:\Rightarrow\:\mathrm{3}\mid{n}!.\:{However}, \\ $$$$\mathrm{3}\:{does}\:{not}\:{divide}\:\mathrm{2}^{\mathrm{1994}} \:{or}\:\mathrm{3}\nmid{n}!\:{while}\: \\ $$$${min}\left({n}\right)=\mathrm{3}.\:{So},\:{no}\:{integer}\:{n}\:{exists}\:{satisfying} \\ $$$${n}!=\mathrm{2}^{\mathrm{1994}} .\: \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 29/Jul/16

I now understand better, thanks so much.

$${I}\:{now}\:{understand}\:{better},\:{thanks}\:{so}\:{much}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com