Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 68036 by mathmax by abdo last updated on 03/Sep/19

let f(x) =cos(αx)  ,2π periodic   developp f at fourier serie.  α ∈ R−Z

$${let}\:{f}\left({x}\right)\:={cos}\left(\alpha{x}\right)\:\:,\mathrm{2}\pi\:{periodic}\:\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$$$\alpha\:\in\:{R}−{Z} \\ $$

Commented by mathmax by abdo last updated on 05/Sep/19

f is even ⇒f(x) =(a_0 /2)+Σ_(n=1) ^∞  a_n cos(nx)  a_n =(2/T)∫_([T])    f(x)cos(nx)dx =(2/(2π))∫_(−π) ^π  cos(αx)cos(nx)dx  =(2/π)∫_0 ^π  (1/2){ cos(n+α)x +cos(n−α)x}dx ⇒  π a_n =∫_0 ^π (cos(n+α)x +cos(n−α)x)dx  =[(1/(n+α))sin(n+α)+(1/(n−α))sin(n−α)x]_0 ^π   =(1/(n+α))sin(n+α)π +(1/(n−α))sin(n−α)π  =(1/(n+α))sin(nπ +απ)+(1/(n−α))sin(nπ −απ)  =(((−1)^n  sin(απ))/(n+α)) −(((−1)^n )/(n−α))sin(απ)  =(−1)^n sin(απ){(1/(n+α))−(1/(n−α))} =(−1)^n sin(απ)(((−2α)/(n^2 −α^2 ))) ⇒  a_n =(((−1)^n )/π)sin(απ)×(((−2α))/(n^2 −α^2 ))  we have  πa_0 = ∫_0 ^π  2cos(αx)dx =2 [(1/α)sin(αx)]_0 ^π  =(2/α)sin(απ) ⇒  a_0 =(2/(πα))sin(απ) ⇒(a_0 /2) =((sin(απ))/(απ)) ⇒  cos(αx) =((sin(απ))/(απ)) −((2α)/π)sin(απ)Σ_(n=1) ^∞    (((−1)^n  cos(nx))/(n^2 −α^2 ))

$${f}\:{is}\:{even}\:\Rightarrow{f}\left({x}\right)\:=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{{T}}\int_{\left[{T}\right]} \:\:\:{f}\left({x}\right){cos}\left({nx}\right){dx}\:=\frac{\mathrm{2}}{\mathrm{2}\pi}\int_{−\pi} ^{\pi} \:{cos}\left(\alpha{x}\right){cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{cos}\left({n}+\alpha\right){x}\:+{cos}\left({n}−\alpha\right){x}\right\}{dx}\:\Rightarrow \\ $$$$\pi\:{a}_{{n}} =\int_{\mathrm{0}} ^{\pi} \left({cos}\left({n}+\alpha\right){x}\:+{cos}\left({n}−\alpha\right){x}\right){dx} \\ $$$$=\left[\frac{\mathrm{1}}{{n}+\alpha}{sin}\left({n}+\alpha\right)+\frac{\mathrm{1}}{{n}−\alpha}{sin}\left({n}−\alpha\right){x}\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\mathrm{1}}{{n}+\alpha}{sin}\left({n}+\alpha\right)\pi\:+\frac{\mathrm{1}}{{n}−\alpha}{sin}\left({n}−\alpha\right)\pi \\ $$$$=\frac{\mathrm{1}}{{n}+\alpha}{sin}\left({n}\pi\:+\alpha\pi\right)+\frac{\mathrm{1}}{{n}−\alpha}{sin}\left({n}\pi\:−\alpha\pi\right) \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} \:{sin}\left(\alpha\pi\right)}{{n}+\alpha}\:−\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}−\alpha}{sin}\left(\alpha\pi\right) \\ $$$$=\left(−\mathrm{1}\right)^{{n}} {sin}\left(\alpha\pi\right)\left\{\frac{\mathrm{1}}{{n}+\alpha}−\frac{\mathrm{1}}{{n}−\alpha}\right\}\:=\left(−\mathrm{1}\right)^{{n}} {sin}\left(\alpha\pi\right)\left(\frac{−\mathrm{2}\alpha}{{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{\pi}{sin}\left(\alpha\pi\right)×\frac{\left(−\mathrm{2}\alpha\right)}{{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\:\:{we}\:{have} \\ $$$$\pi{a}_{\mathrm{0}} =\:\int_{\mathrm{0}} ^{\pi} \:\mathrm{2}{cos}\left(\alpha{x}\right){dx}\:=\mathrm{2}\:\left[\frac{\mathrm{1}}{\alpha}{sin}\left(\alpha{x}\right)\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{2}}{\alpha}{sin}\left(\alpha\pi\right)\:\Rightarrow \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi\alpha}{sin}\left(\alpha\pi\right)\:\Rightarrow\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:=\frac{{sin}\left(\alpha\pi\right)}{\alpha\pi}\:\Rightarrow \\ $$$${cos}\left(\alpha{x}\right)\:=\frac{{sin}\left(\alpha\pi\right)}{\alpha\pi}\:−\frac{\mathrm{2}\alpha}{\pi}{sin}\left(\alpha\pi\right)\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{cos}\left({nx}\right)}{{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com