Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68033 by mathmax by abdo last updated on 03/Sep/19

find ∫  (dx/(1+sinx +sin(2x)))

$${find}\:\int\:\:\frac{{dx}}{\mathrm{1}+{sinx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$

Answered by MJS last updated on 04/Sep/19

I think I did this before  we have to use Weierstrass  ∫(dx/(1+sin x +sin 2x))=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =2∫((t^2 +1)/((t+1)(t^3 −3t^2 +5t+1)))dt=  =2∫((t^2 +1)/((t+1)(t−α)(t−β)(t−γ)))dt  α=1+u+v  β=1+(−(1/2)+((√3)/2)i)u−(−(1/2)−((√3)/2)i)v  γ=1+(−(1/2)−((√3)/2)i)u−(−(1/2)+((√3)/2)i)v  u=((−2+(2/9)(√(87))))^(1/3)   v=((2+(2/9)(√(87))))^(1/3)   now we have to decompose. the path is easy  but the constants are terrible

$$\mathrm{I}\:\mathrm{think}\:\mathrm{I}\:\mathrm{did}\:\mathrm{this}\:\mathrm{before} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{use}\:\mathrm{Weierstrass} \\ $$$$\int\frac{{dx}}{\mathrm{1}+\mathrm{sin}\:{x}\:+\mathrm{sin}\:\mathrm{2}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\frac{\mathrm{2}{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{5}{t}+\mathrm{1}\right)}{dt}= \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}+\mathrm{1}\right)\left({t}−\alpha\right)\left({t}−\beta\right)\left({t}−\gamma\right)}{dt} \\ $$$$\alpha=\mathrm{1}+{u}+{v} \\ $$$$\beta=\mathrm{1}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}−\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$$\gamma=\mathrm{1}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}−\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$${u}=\sqrt[{\mathrm{3}}]{−\mathrm{2}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{87}}} \\ $$$${v}=\sqrt[{\mathrm{3}}]{\mathrm{2}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{87}}} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{decompose}.\:\mathrm{the}\:\mathrm{path}\:\mathrm{is}\:\mathrm{easy} \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{are}\:\mathrm{terrible} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com