Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67851 by mathmax by abdo last updated on 01/Sep/19

find ∫  (dx/(x^2 −z))  with z from C .

$${find}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:\:{with}\:{z}\:{from}\:{C}\:. \\ $$

Commented by MJS last updated on 01/Sep/19

what′s the problem/mistake if we just  calculate it as if z∈R?  ∫(dx/(x^2 −z))=(1/(2(√z)))ln ((x−(√z))/(x+(√z))) +C  for ∫_0 ^∞ (dx/(x^2 −z)) this would give −(π/(2(√z)))i

$$\mathrm{what}'\mathrm{s}\:\mathrm{the}\:\mathrm{problem}/\mathrm{mistake}\:\mathrm{if}\:\mathrm{we}\:\mathrm{just} \\ $$$$\mathrm{calculate}\:\mathrm{it}\:\mathrm{as}\:\mathrm{if}\:{z}\in\mathbb{R}? \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{z}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{z}}}\mathrm{ln}\:\frac{{x}−\sqrt{{z}}}{{x}+\sqrt{{z}}}\:+{C} \\ $$$$\mathrm{for}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:\mathrm{this}\:\mathrm{would}\:\mathrm{give}\:−\frac{\pi}{\mathrm{2}\sqrt{{z}}}\mathrm{i} \\ $$

Commented by mathmax by abdo last updated on 01/Sep/19

let z=r e^(iθ)  ⇒∫   (dx/(x^2 −z)) =∫  (dx/(x^2 −((√r)e^((iθ)/2) )^2 ))  =∫    (dx/((x−(√r)e^((iθ)/2) )(x+(√r)e^((iθ)/2) ))) =(1/(2(√r)e^((iθ)/2) ))∫((1/(x−(√r)e^((iθ)/2) ))−(1/(x+(√r)e^((iθ)/2) )))dx  =(e^(−((iθ)/2)) /(2(√r))) ln(((x−(√r)e^((iθ)/2) )/(x+(√r)e^((iθ)/2) ))) +C .

$${let}\:{z}={r}\:{e}^{{i}\theta} \:\Rightarrow\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:=\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} −\left(\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} \right)^{\mathrm{2}} } \\ $$$$=\int\:\:\:\:\frac{{dx}}{\left({x}−\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} \right)\left({x}+\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} \right)}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }\int\left(\frac{\mathrm{1}}{{x}−\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }−\frac{\mathrm{1}}{{x}+\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }\right){dx} \\ $$$$=\frac{{e}^{−\frac{{i}\theta}{\mathrm{2}}} }{\mathrm{2}\sqrt{{r}}}\:{ln}\left(\frac{{x}−\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }{{x}+\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }\right)\:+{C}\:. \\ $$

Commented by mathmax by abdo last updated on 01/Sep/19

sir mjs your answer is correct .

$${sir}\:{mjs}\:{your}\:{answer}\:{is}\:{correct}\:. \\ $$

Commented by mathmax by abdo last updated on 01/Sep/19

∫_0 ^∞   (dx/(x^2 −z)) =(e^(−((iθ)/2)) /(2(√r)))[ln(((x−(√r)e^((iθ)/2) )/(x+(√r)e^((iθ)/2) )))]_0 ^(+∞) =(e^(−((iθ)/2)) /(2(√r)))(−ln(−1)) =((iπ)/(2(2(√r))e^((iθ)/2) ))  =((iπ)/(4(√r)e^((iθ)/2) ))   with z =r e^(iθ)  .

$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:=\frac{{e}^{−\frac{{i}\theta}{\mathrm{2}}} }{\mathrm{2}\sqrt{{r}}}\left[{ln}\left(\frac{{x}−\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }{{x}+\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }\right)\right]_{\mathrm{0}} ^{+\infty} =\frac{{e}^{−\frac{{i}\theta}{\mathrm{2}}} }{\mathrm{2}\sqrt{{r}}}\left(−{ln}\left(−\mathrm{1}\right)\right)\:=\frac{{i}\pi}{\mathrm{2}\left(\mathrm{2}\sqrt{{r}}\right){e}^{\frac{{i}\theta}{\mathrm{2}}} } \\ $$$$=\frac{{i}\pi}{\mathrm{4}\sqrt{{r}}{e}^{\frac{{i}\theta}{\mathrm{2}}} }\:\:\:{with}\:{z}\:={r}\:{e}^{{i}\theta} \:. \\ $$

Commented by MJS last updated on 01/Sep/19

thank you  I just wasn′t sure if this was allowed in C

$$\mathrm{thank}\:\mathrm{you} \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{wasn}'\mathrm{t}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{this}\:\mathrm{was}\:\mathrm{allowed}\:\mathrm{in}\:\mathbb{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com